
تم تلخيص النص بواسطة موقع لخصل © lakhasly.com

System Architectures Outline ▸ Definition of System Architectures ▸ System Architectures Diagram ▸
Types of System Architectures ▸ Benefits of System Architectures System Architectures Definition ▸

System architecture is the conceptual model that defines the structure, behavior, and more views of a
system. ▸ It’s a representation of a system in which there is a mapping of functionality onto hardware

and software components, a mapping of the software architecture onto the hardware architecture, and
human interaction with these components. ▸ The architectural components and set of relationships

between these components that an architecture describes may consist of hardware, software,
documentation, facilities, manual procedures, or roles played by organizations or people System

Architectures Definition (Cont.) ▸ It describes the physical placement of software components. ▸ System
architecture describes how all system components interconnect and how data links between them. ▸

Architecture can function as a guide or a framework for designing and developing a new system or can
assist in defining a project's goals. System Architecture Diagram ▸ The system architecture diagram is a

visual representation of the system architecture. ▸ It shows the connections between the various
components of the system and indicates what functions each component performs. ▸ The general
system representation shows the major functions of the system and the relationships between the
various system components. Types of System Architectures ▸ Hardware Architecture ▸ Software

Architecture ▸ Enterprise Architecture Hardware Architecture ➢ Hardware Architecture refers to the
identification of the physical components and their interrelationships, which allows hardware designers to

understand how their components fit into a system architecture. ➢ It provides software component
designers important information needed for software development and integration. ➢ Parts of a computer
hardware architecture: • Central processing Unit • Main Memory • Secondary Memory • I/O Devices •
Network Connection Hardware Architecture (Cont.) ➢ Central Processing Unit (CPU): is the part of the

computer that is built to be obsessed with "what is next?”. • What is next means what instructions should
I perform next. • CPU performs insurrections that already stored in the main memory. ➢ Main Memory: is

used to store information that the CPU needs in a hurry. • The main memory is nearly as fast as the
CPU. • The information stored in the main memory vanishes when the computer is turned off. Hardware

Architecture (Cont.) ➢ Secondary Memory is also used to store information, but it is much slower
comparing to the main memory. The advantage of the secondary memory is that it can store information

even when the power is off “Permanent”. Ex; flash memory. ➢ I/O Devices are simply our screen,
keyboard, mouse, microphone, speaker, touchpad, etc. They are all the ways we interact with the

computer. ➢ Network Connection is used to retrieves information over a network. It is a slower and at
times unreliable form of Secondary Memory. Hardware Architecture (Cont.) Software Architecture ➢

Software architecture refers to the logical organization of a distributed system into software components.
➢ Instead of one big monolithic application, distributed systems are broken down into multiple

components. ➢ The way in which these components are broken down impacts everything from system
performance to reliability to response latency. Software Architecture (Cont.) ➢ There are many

architecture styles which can be applied on software, such as; • Layered architecture • Publish-
Subscribe architecture Software Architecture (Cont.) ➢ Layered architecture In a layered architecture,

components are organized in layers. Components on a higher layer make downcalls (send requests to a



تم تلخيص النص بواسطة موقع لخصل © lakhasly.com

lower layer). While lower layer components can make upcalls (send requests up), they usually only
respond to higher layer requests. Google drive is a good example of layered architecture, where it shows

clearly how the three layered are connecting; 1. Interface layer: you request to see the latest doc from
your drive. 2. Processing layer: processes your request and asks for the information from the data layer.
3. Data layer: stores persistent data (aka your file) and provides access to higher-level layers. Software
Architecture (Cont.) • The data layer returns the information to the processing layer which in turn sends

it to the interface where you can view and edit it. • While it feels like one cohesive process, it’s broken
down into three (or more) components on three distinct layers. • Each layer may or may not be placed

on a different machine (this is a system architecture consideration). Software Architecture (Cont.) ▸
Publish-Subscribe architecture or Pub/Sub is a messaging service where the senders of messages are

decoupled from the receivers of messages. There are several key concepts in a Pub/Sub service: •
Message: the data that moves through the service. • Topic: a named entity that represents a feed of

messages. • Subscription: a named entity that represents an interest in receiving messages on a
particular topic. • Publisher (also called a producer): creates messages and sends (publishes) them to
the messaging service on a specified topic. • Subscriber (also called a consumer): receives messages

on a specified subscription Software Architecture (Cont.) ▸ Publishers decide what topics their messages
will belong to. ▸ Event bus filters the messages by topic before delivering them into the relevant
subscribers. ▸ Ex; if publisher sends a massage with topic A, massage will be forwarded to any

subscribers who have subscribed to topic A. Similarly, a massage with topic B will be delivered to sub
scribers of Topic B. ▸ News papers, ads, and social networks are examples of this style. Enterprise

Architecture ➢ Enterprise architecture (EA) is the practice of analyzing, designing, planning, and
implementing enterprise analysis to successfully execute on business strategies. ➢ EA helps

organizations to structure IT projects and policies to achieve desired business results, to stay agile and
resilient in the face of rapid change, and to stay on top of industry trends and disruptions using

architecture principles and practices, a process also known as enterprise architectural planning (EAP). ➢
It is especially useful for large businesses going through digital transformation, because it focuses on

bringing legacy processes and applications together to form a more seamless environment. Enterprise
Architecture ➢ EA is guided by the organization’s business requirements and that will help lay out how

information, business, and technology flow together. This has become a priority for businesses that are
trying to keep up with new technologies such as the cloud, IoT, machine learning, and other emerging

trends that will prompt digital transformation. ➢ Zachman Framework provides a structure for organizing
information about an organization’s business, processes, data, applications, and technology. one of the

main framework used for enterprise architecture. Benefits of System Architectures • Vision Development
and implementation • Facilitate Faster IT System Changes • Ensure that the IT plans align with

business programs • Analyze potential cost-saving opportunities Virtualization Outline ▸ Definition of
Virtualization ▸ Definition of Virtual Machine (VM) ▸ Role and types of Hypervisor ▸ Types of

virtualization ▸ Benefits of virtualization Definition of Virtualization ➢ Virtualization is a process that allows
for more efficient utilization of physical computer hardware and is the foundation of cloud computing. ➢

Virtualization uses software to create an abstraction layer over computer hardware that allows the



تم تلخيص النص بواسطة موقع لخصل © lakhasly.com

hardware elements of a single computer— processors, memory, storage and more—to be divided into
multiple virtual computers, commonly called virtual machines (VMs). ➢ Each VM runs its own operating

system (OS) and behaves like an independent computer Definition of Virtual Machine (VM) ➢ Virtual
machine (VM) is a virtual environment that simulate a physical compute in software form. ➢ It normally

comprise several files containing the VM’s configuration, the storage for the virtual hard drive, and some
snapshots of the VM that preserve its state at a particular point in time. ➢ A VM cannot interact directly

with a physical computer. Instead, it needs a lightweight software layer called a hypervisor to coordinate
between it and the underlying physical hardware. Role and types of Hypervisor ➢ A hypervisor is the

software layer that coordinates/manage VMs. It serves as an interface between the VM and the
underlying physical hardware, ensuring that each has access to the physical resources it needs to

execute (1). It also ensures that the VMs don’t interfere with each other by impinging on each other’s
memory space or compute cycles (2). ➢ Hypervisor has two types: ✓ Type 1 ✓ Type 2 Role and types of

Hypervisor(Cont.) ➢ Type1 interact with the underlying physical resources, replacing the traditional
operating system altogether. They most commonly appear in virtual server scenarios. ➢ Type2 run as an

application on an existing OS. Most commonly used on endpoint devices to run alternative operating
systems, they carry a performance overhead because they must use the host OS to access and
coordinate the underlying hardware resources. Types of Virtualization ➢ Desktop Virtualization ➢

Network Virtualization ➢ Storage Virtualization ➢ Application Virtualization Types of virtualization (Cont.)
➢ Desktop Virtualization allow user to run multiple desktop operating systems, each in its own VM on the
same computer. There are two types of desktop virtualization: • Virtual desktop infrastructure (VDI) runs

multiple desktops in VMs on a central server and streams them to users who log in on thin client
devices. In this way, VDI allows an organization provide its users access to variety of OSs from any

device, without installing OSs on any device. • Local desktop virtualization runs a hypervisor on a local
computer, enabling the user to run one or more additional OSs on that computer and switch from one

OS to another as needed without changing anything about the primary OS. Types of virtualization
(Cont.) ➢ Network Virtualization Network virtualization uses software to create a “view” of the network

that an administrator can use to manage the network from a single console. It abstracts hardware
elements and functions (e.g., connections, switches, routers, etc.) ➢ Software-Defined Networking

(SDN) virtualizes hardware that controls network traffic routing (called the “control plane”) ➢ Network
Function Virtualization (NFV) virtualizes one or more hardware appliances that provide a specific

network function (e.g., a firewall, load balancer, or traffic analyzer), making those appliances easier to
configure, provision, and manage. Types of virtualization (Cont.) ➢ Storage Virtualization Storage

virtualization enables all the storage devices on the network, whether they’re installed on individual
servers or standalone storage units to be accessed and managed as a single storage device. Storage

virtualization makes it easier to provision storage for VMs and makes maximum use of all available
storage on the network. ➢ Application Virtualization runs application software without installing it directly

on the user’s OS. This differs from complete desktop virtualization because only the application runs in a
virtual environment, while the OS on the end user’s device runs as usual. Types of virtualization (Cont.)
➢ Types of application virtualization: • Local Application Virtualization The entire application runs on the



تم تلخيص النص بواسطة موقع لخصل © lakhasly.com

endpoint device but runs in a runtime environment instead of on the native hardware. • Application
Streaming The application lives on a server which sends small components of the software to run on the
end user's device when needed. • Server-based Application Virtualization The application runs entirely

on a server that sends only its user interface to the client device. Benefits of virtualization ➢ Resource
efficiency ➢ Easier management ➢ Minimal downtime ➢ Faster provisioning


