Plots in Figure 1 depict the one-electron radial density distribution for pairs of adjacent atoms (ions) within the He-isoelectronic series in its ground-state. On the contrary, the one-particle radial density distribution of the Li[^](+1) does not extend to the Light blue zone, as shown in Figure 1 (a). The Light blue zone is part of the one-particle radial density distribution of the He atom. The higher the peak's value, the denser the electronic cloud will be: [?D(r)? max] He< [?D(r)? max] (Li^{^(+1)})< [?D(r)? max] $]_(Be^{\wedge}(+2)\)\ [r_0\]_He\ > [r_0\]_(Li^{\wedge}(+1)\)\ > [r_0\]_(Be^{\wedge}(+2)\)\ > [r_0\]_(B^{\wedge}(+3)\)\ > [r_0\]_(C^{\wedge}(+4)\)\ > [r_0\]$] $(N^{(+5)}) > [r \ 0] (O^{(+6)})$ Plots Figure 2 and 3 represent three and two dimensions, respectively. The contour plot is produced by slicing the three-dimensional plots of the D(r 1,r 2) into definite slices. The observation that the red region of the $Li^{\Lambda}(+1)$ ion covers the region from ?D(r-1,r-2)? max down to $D(r_1,r_2)=1.80$ and the red region of the $N^{(+5)}$ ion extends from $?D(r_1,r_2)?$ max down to $D(r_1,r_2)$)=11confirms this phenomena. However, the shrinkage in the orbital size will be compensated by producing a denser electron cloud near the nucleus. The first characteristic is the inability of the electron density to extend the nucleus. This is a direct consequence of the properties of any well-defined wavefunction in quantum mechanics. Therefore, the contour plot is a projection of the three-dimensional plots onto a two-dimensional plane defined by r 1 and? Another way, at high atomic numbers, the .nucleus draws the electron cloud inward and toward itself.r? 2.see Figures 4 and 5