
تم تلخيص النص بواسطة موقع لخصل © lakhasly.com

Processes can execute concurrently ????Returns the original value of passed parameter "value" 3. That
is, the swap takes place only under this condition. 5.22 Silberschatz, Galvin and Gagne (C)2013

Operating System Concepts - 9th Edition Solution using compare_and_swap Shared integer "lock"
initialized to 0; Solution: do { while (compare_and_swap(&lock, 0, 1) != 0) ; /* do nothing */ /* critical

section */ lock = 0; /* remainder section */ } while (true); 5.23 Silberschatz, Galvin and Gagne (C)2013
Operating System Concepts - 9th Edition int compare _and_swap(int *value, int expected, int

new_value) { int temp = *value; if (*value == expected) *value = new_value; return temp; } ... lock = 0; do
{ while (compare_and_swap(&lock, 0, 1) != 0) ; /* do nothing */ /* critical section */ lock = 0; /* remainder

section */ } while (true); Solution using compare_and_swap lock value 0 expected 0 new_value 1 temp
P0 0 1 Animated by Sarah Al-Shareef (C) 2018 5.24 Silberschatz, Galvin and Gagne (C)2013 Operating

System Concepts - 9th Edition int compare _and_swap(int *value, int expected, int new_value) { int
temp = *value; if (*value == expected) *value = new_value; return temp; } ... lock = 0; do { while

(compare_and_swap(&lock, 0, 1) != 0) ; /* do nothing */ /* critical section */ lock = 0; /* remainder section
*/ } while (true); Solution using compare_and_swap lock value 0 expected 0 new_value 1 temp P0 0 1
P1 Animated by Sarah Al-Shareef (C) 2018 1 5.25 Silberschatz, Galvin and Gagne (C)2013 Operating

System Concepts - 9th Edition Mutex Locks Previous solutions are complicated and generally
inaccessible to application programmers OS designers build software tools to solve critical section

problem Simplest is mutex lock (mutual exclusion lock) Protect a critical section by first acquire() a lock
then release() the lock Boolean variable indicating if lock is available or not Calls to acquire() and

release() must be atomic Usually implemented via hardware atomic instructions One disadvantage of
this solution: it requires busy waiting While the process is in CS, any other process tries to enter must

loop continuously in the call to acquire() Busy waiting wastes CPU cycles.Solved via priority-inheritance
protocol5.18 Silberschatz, Galvin and Gagne (C)2013 Operating System Concepts - 9th Edition Solution

using test_and_set() Shared Boolean variable lock, initialized to FALSE Solution: do { while
(test_and_set(&lock)) ; /* do nothing */ /* critical section */ lock = false; /* remainder section */ } while

(true); 5.19 Silberschatz, Galvin and Gagne (C)2013 Operating System Concepts - 9th Edition Solution
using test_and_set() boolean test_and_set (boolean *target) { boolean rv = *target; *target = TRUE;
return rv: } ... lock = false; do { while (test_and_set(&lock)) /wait/ ; /* critical section */ lock = false; /*

remainder section */ } while (true); lock rv target P0 Animated by Sarah Al-Shareef (C) 2018 5.20
Silberschatz, Galvin and Gagne (C)2013 Operating System Concepts - 9th Edition Solution using

test_and_set() boolean test_and_set (boolean *target) { boolean rv = *target; *target = TRUE; return rv:
} ... lock = false; do { while (test_and_set(&lock)) /wait/ ; /* critical section */ lock = false; /* remainder

section */ } while (true); lock rv target P0 P1 Animated by Sarah Al-Shareef (C) 2018 5.21 Silberschatz,
Galvin and Gagne (C)2013 Operating System Concepts - 9th Edition compare_and_swap Instruction

Definition: int compare _and_swap(int *value, int expected, int new_value) { int temp = *value; if (*value
== expected) *value = new_value; return temp; } 1.Originally called P() and V() Definition of the wait()

operation wait(S) { while (S


