لخّصلي

خدمة تلخيص النصوص العربية أونلاين،قم بتلخيص نصوصك بضغطة واحدة من خلال هذه الخدمة

نتيجة التلخيص (51%)

This study is aimed at forecasting traffic on King Fahd Causeway which carries cross border traffic between Kingdoms of Saudi Arabia andBahrain. Keeping theabove factors inmind, thestockmarketprices of Saudi Arabia and Bahrain were used to predict weekly Average Daily Traffic (ADT) for border transport between these two countries. The weeklyADTwaspredictedusingstockmarketindicesbecausetheeffect of these indices (political and economic situation) will usually take a few days and will not show on micro scale such as daily traffic. Following that, other non-traffic parameters, including weather, vacation and salary periods, and other time-related parameters, were used, withthepredictedweeklyADT,inthemodelforpredictingdailytraffic. The focus of this research was to investigate the effects of readily available non-traffic parameters on border transport prediction in this region. These parameters may cause changes in travel demand, which will not be shown in the periodic trend of traffic. Moreover, the continuous collection of traffic data for long periods requires substantial resources and state-of-the-art technology for accurate traffic counts (Gramaglia et al., 2014). The data collection technologies are undergoing changes with time, but there is still a lack of integration between travel demand modelers and practice communities (Lee et al., 2016; Kisgyörgy and Vasvári, 2017). Furthermore, time-series data for predicting cross-border transport may not be viable since non-traffic parameters may cause unprecedented change in traffic pattern. Therefore, a prediction model based upon non-traffic parameters may be more convenient in this case. This study is inspired by a previous study, done in the same area, by El-Alfy et al. (2015). It is found to be a pioneering study on the use of stock market prices for border traffic forecasting. Two concerns were identified inthe above mentioned study, i.e. use ofstock market indices for predicting daily traffic and use of Artificial Neural Networks (ANNs). The effects ofnationaleconomic andpolitical situations, which is surrogated by stock prices, may not always be affecting travel demand on a daily basis. It seems more logical to expect that historic data of prices for a longer time span (week or fortnight) are beneficial in predicting traffic. Secondly, ANNs do not give insight about the relationship between the predicted value and its predictors. Regression models would be a better approach considering their explanatory powers established through statistical bases. These concerns have been addressed in this research. Moreover, time series traffic data was used in developing the prediction models by El-alfy et al. (2015) in their study, which is not feasible, as mentioned above. Hence this study makes use of readily available non-traffic parameters for predicting border traffic. This study also provides the comparison of urban and border traffic prediction parameters and approaches.


النص الأصلي

This study is aimed at forecasting traffic on King Fahd Causeway which carries cross border traffic between Kingdoms of Saudi Arabia andBahrain. Keeping theabove factors inmind, thestockmarketprices of Saudi Arabia and Bahrain were used to predict weekly Average Daily Traffic (ADT) for border transport between these two countries. The weeklyADTwaspredictedusingstockmarketindicesbecausetheeffect of these indices (political and economic situation) will usually take a few days and will not show on micro scale such as daily traffic. Following that, other non-traffic parameters, including weather, vacation and salary periods, and other time-related parameters, were used, withthepredictedweeklyADT,inthemodelforpredictingdailytraffic. The focus of this research was to investigate the effects of readily available non-traffic parameters on border transport prediction in this region. These parameters may cause changes in travel demand, which will not be shown in the periodic trend of traffic. Moreover, the continuous collection of traffic data for long periods requires substantial resources and state-of-the-art technology for accurate traffic counts (Gramaglia et al., 2014). The data collection technologies are undergoing changes with time, but there is still a lack of integration between travel demand modelers and practice communities (Lee et al., 2016; Kisgyörgy and Vasvári, 2017). Furthermore, time-series data for predicting cross-border transport may not be viable since non-traffic parameters may cause unprecedented change in traffic pattern. Therefore, a prediction model based upon non-traffic parameters may be more convenient in this case. This study is inspired by a previous study, done in the same area, by El-Alfy et al. (2015). It is found to be a pioneering study on the use of stock market prices for border traffic forecasting. Two concerns were identified inthe above mentioned study, i.e. use ofstock market indices for predicting daily traffic and use of Artificial Neural Networks (ANNs). The effects ofnationaleconomic andpolitical situations, which is surrogated by stock prices, may not always be affecting travel demand on a daily basis. It seems more logical to expect that historic data of prices for a longer time span (week or fortnight) are beneficial in predicting traffic. Secondly, ANNs do not give insight about the relationship between the predicted value and its predictors. Regression models would be a better approach considering their explanatory powers established through statistical bases. These concerns have been addressed in this research. Moreover, time series traffic data was used in developing the prediction models by El-alfy et al. (2015) in their study, which is not feasible, as mentioned above. Hence this study makes use of readily available non-traffic parameters for predicting border traffic. This study also provides the comparison of urban and border traffic prediction parameters and approaches.

تلخيص النصوص العربية والإنجليزية أونلاين

تلخيص النصوص آلياً

تلخيص النصوص العربية والإنجليزية اليا باستخدام الخوارزميات الإحصائية وترتيب وأهمية الجمل في النص

تحميل التلخيص

يمكنك تحميل ناتج التلخيص بأكثر من صيغة متوفرة مثل PDF أو ملفات Word أو حتي نصوص عادية

رابط دائم

يمكنك مشاركة رابط التلخيص بسهولة حيث يحتفظ الموقع بالتلخيص لإمكانية الإطلاع عليه في أي وقت ومن أي جهاز ماعدا الملخصات الخاصة

مميزات أخري

نعمل علي العديد من الإضافات والمميزات لتسهيل عملية التلخيص وتحسينها


آخر التلخيصات

معنى كلمة الفلس...

معنى كلمة الفلسفة إنّ كلمة الفلسفة هي كلمة لاتينية الأصل من فيلوسوفيا (بالإنجليزية: Philosophia)، وه...

الفَخْرُ بالأجْ...

الفَخْرُ بالأجْنَاسِ قديمٌ، لم تَخْلُ مِنهُ أُمَّةٌ ولا قَبيلَةٌ، فَمَ من جِيلٍ منَ النّاسِ إلاّ ولَ...

Currently, gree...

Currently, green nanotechnology-based approaches using waste materials from food have been accepted ...

الفَخْرُ بالأجْ...

الفَخْرُ بالأجْنَاسِ قديمٌ، لم تَخْلُ مِنهُ أُمَّةٌ ولا قَبيلَةٌ، فَمَ من جِيلٍ منَ النّاسِ إلاّ ولَ...

الكلام الموجز ا...

الكلام الموجز اقرب الى الفهم والحفظ, وادعى للتاثر به وارجى للاخذ بمضمونه . فخير الكلام ما قل و دل, و...

اننا نستمتع بال...

اننا نستمتع بالعصائر الطبيعية المصنوعة من الخضر والفواكه ولكن ليس الكثير منا يعرف عن قيمتها الصحية و...

يعرف الأدب العر...

يعرف الأدب العربي بأنَّه جُلُّ الأعمال التي كتبت باللغة العربية سواء أكان: شعراً أم نثراً، ويضم كذلك...

Ma'aruf the cob...

Ma'aruf the cobbler and his wife Fatimah live in Cairo. Fatimah wants a vermicelli-cake, but when Ma...

שנה מעניקה הקרן...

שנה מעניקה הקרן להנצחת נשיאי ארץ ישראל וראשי ממשלותיה פרס למחקר או ספר המנציח את פועלו של אחד מראשי ...

نتج عن انسحاب ا...

نتج عن انسحاب الاحتلال البريطاني من فلسطين وقيام الحرب عام ١٩٤٨ميلادي فراغا سياسيا فسارعت الهيئة الع...

بيان صفات و أخل...

بيان صفات و أخلاق الصديق المثالي التي تدل على النموذجالذي يرتجيه كل امرئ في صديقه 895555555555555555...

أن الأسلوب المع...

أن الأسلوب المعرفي أسلوباً إدراكياً حيث أن الإدراك بوصفه عملية معرفية يشتمل علي انشطة عديده منها الا...