
Summarized by © lakhasly.com

Kernel objects are special constructs that are the building blocks for application development for real-
time embedded systems.Counting Semaphores o A mutual exclusion (mutex) semaphore is a special
binary semaphore that supports ownership, task deletion safety, and one or more protocols for avoiding
problems inherent to mutual exclusion.Typically, the more deadlines to be met-and the shorter the time
between them-the faster the system's CPU must be. o Although underlying hardware can dictate a
system's processing power, its software can also contribute to system performance.To meet total system
requirements, designers must understand both the static and dynamic memory consumption of the
RTOS and the application that will run on it. Compactness o Because RTOSes can be used in a wide
variety of embedded systems, they must be able to scale up or down to meet application-specific
requirements.As mentioned earlier, developers decompose applications into multiple concurrent tasks to
optimize the handling of inputs and outputs within set time constraints.Semaphores o semaphore
(sometimes called a semaphore token) is a kernel object that one or more threads of execution can
acquire or release for the purposes of synchronization or mutual exclusion.The most common RTOS
kernel objects are: o Tasks are concurrent and independent threads of execution that can compete for
CPU execution time.Some of the more common attributes are: o Reliability o Predictability o
Performance o Compactness o Scalability Key Characteristics of an RTOS o Embedded systems must
be reliable.o Depending on how much functionality is required, an RTOS should be capable of adding or
deleting modular components, including file systems and protocol stacks.Defining Semaphores o When
a semaphore is first created, the kernel assigns to it an associated semaphore control block (SCB), a
unique ID, a value (binary or a count), and a task-waiting list.o Semaphores are token-like objects that
can be incremented or decremented by tasks for synchronization or mutual exclusion.The term
deterministic describes RTOSes with predictable behavior, in which the completion of operating system
calls occurs within known timeframes.o Kernels are the core module of every RTOS and typically contain
kernel objects, services, and scheduler.Defining a Task A task is schedulable, and the task is able to
compete for execution time on a system, based on a predefined scheduling algorithm.Task States and
Scheduling o blocked state-the task has requested a resource that is not available, has requested to
wait until some event occurs, or has delayed itself for some duration.o Multiple concurrent threads of
execution within an application must be able to synchronize their execution and coordinate mutually
exclusive access to shared resources.Defining Semaphores o The kernel tracks the number of times a
semaphore has been acquired or released by maintaining a token count, which is initialized to a value
when the semaphore is created.These services comprise sets of API calls that can be used to perform
operations on kernel objects or can be used in general to facilitate timer management, interrupt handling,
device I/O, and memory management.However, this scheme is inappropriate for real-time embedded
applications, which generally handle multiple inputs and outputs within tight time constraints.Tasks o
Concurrent design requires developers to decompose an application into small, schedulable, and
sequential program units.o Most RTOS kernels provide task objects and task management services to
facilitate designing concurrency within an application.Defining a Task A task is defined by its distinct set
of parameters and supporting data structures.o The reserved priority levels refer to the priorities used
internally by the RTOS for its system tasks.Defining a Task Generally three main states are used in most



Summarized by © lakhasly.com

typical preemptive-scheduling kernels, including: o ready state-the task is ready to run but cannot
because a higher priority task is executing.o As a task acquires the semaphore, the token count is
decremented; as a task releases the semaphore, the count is incremented.o Message Queues are
buffer-like data structures that can be used for synchronization, mutual exclusion, and data exchange by
passing messages between tasks.o Developers can write simple benchmark programs to validate the
determinism of an RTOS.Scalability Some points to remember include the following: o RTOSes are best
suited for real-time, application-specific embedded systems; GPOSes are typically used for general-
purpose systems.o RTOSes are programs that schedule execution in a timely manner, manage system
resources, and provide a consistent foundation for developing application code.o RTOSes for real-time
embedded systems should be reliable, predictable, high performance, compact, and scalable.To sum up
Simple software applications are typically designed to run sequentially , one instruction at a time, in a
pre-determined chain of instructions.Tasks A task is an independent thread of execution that can
compete with other concurrent tasks for processor execution time.o When the kernel first starts, it
creates its own set of system tasks and allocates the appropriate priority for each from a set of reserved
priority levels.When creating a counting semaphore, assign the semaphore a count that denotes the
number of semaphore tokens it has initially.Objects Along with objects, most kernels provide services
that help developers create applications for real-time embedded systems.For example, a digital solar-
powered calculator might reset itself if it does not get enough light.o common way that developers
categorize highly reliable systems is by quantifying their downtime per year.Predictability o This
requirement dictates that a system must perform fast enough to fulfill its timing
requirements.Performance o Application design constraints and cost constraints help determine how
compact an embedded system can be. For example, a cell phone clearly must be small, portable, and
low cost.If an RTOS scales well, the same RTOS can be used in both projects, instead of two different
RTOSes, which saves time and money.When done correctly, concurrent design allows system
multitasking to meet performance and timing requirements for a real-time system.Specifically, upon
creation, each task has an associated name, a unique ID, a priority, a task control block (TCB), a stack,
and a task routine.o To address these requirements, RTOS kernels provide a semaphore object and
associated semaphore management services.A requesting task, therefore, cannot acquire the
semaphore, and the task blocks if it chooses to wait for the semaphore to become available.Note that
when a binary semaphore is first created, it can be initialized to either available or unavailable (1 or 0,
respectively).Counting Semaphores o If the initial count is greater than 0, the semaphore is created in
the available state, and the number of tokens it has equals its count.This feature allows any task to
release a counting semaphore token.o A mutex is initially created in the unlocked state, in which it can
be acquired by a task.Services An application's requirements define the requirements of its underlying
RTOS.On the other hand, a telecom switch cannot reset during operation without incurring high
associated costs for down time.Benchmarks are written by producing timestamps when a system call
starts and when it completes.Real-time embedded software applications must be designed for
concurrency.o A semaphore is like a key that allows a task to carry out some operation or to access a
resource.In this sense, acquiring a semaphore is like acquiring the duplicate of a key from an apartment



Summarized by © lakhasly.com

manager when the apartment manager runs out of duplicates, the manager can give out no more keys.o
Likewise, when a semaphore s limit is reached, it can no longer be acquired until someone gives a key
back or releases the semaphore.o If the token count reaches 0, the semaphore has no tokens left.o
These blocked tasks are kept in the task-waiting list in either first in/first out (FIFO) order or highest
priority first order.Defining Semaphores o A binary semaphore can have a value of either 0 or 1.Binary
Semaphores o Binary semaphores are treated as global resources, which means they are shared
among all tasks that need them.Each release operation increments the count by one, even if the task
making this call did not acquire a token in the first place.An unbounded count allows the counting
semaphore to count beyond the initial count.Depending on the application, the system might need to
operate for long periods without human intervention.Reliability o The RTOS needs to be predictable to a
certain degree.The result is based on timed responses to specific RTOS calls.In a good deterministic
RTOS, the variance of the response times for each type of system call is very small.o An application
should avoid using these priority levels for its tasks because running application tasks at such level may
affect the overall system performance or behavior.o A single semaphore can be acquired a finite number
of times.When a binary semaphore's value is 0, the semaphore is considered unavailable (or empty);
when the value is 1, the binary semaphore is considered available (or full).o A counting semaphore uses
a count to allow it to be acquired or released multiple times.o Counting semaphores are also global
resources that can be shared by all tasks that need them.o Some implementations of counting
semaphores might allow the count to be bounded.A bounded count is a count in which the initial count
set for the counting semaphore, determined when the semaphore was first created.o The states of a
mutex are unlocked or locked (0 or 1, respectively).o Sometimes developers measure RTOS
performance on a call-by-call basis.These design requirements limit system memory, which in turn
limits the size of the application and operating system.o The RTOS clearly must be small and
efficient.Together, these components make up what is known as the task object.


