Prime numbers play a *critical role in modern encryption systems, particularly in public-key cryptography, where they form the foundation of widely used encryption algorithms such as **RSA (Rivest-Shamir-Adleman)*. Their importance lies in their mathematical properties, especially their behavior in modular arithmetic and their difficulty to factorize when part of large composite numbers.RSA Encryption: The Role of Prime Numbers* In the RSA encryption algorithm, the security of the system is based on the difficulty of factoring large composite numbers into their prime factors.- The security of this system relies on the fact that, while multiplying $\langle p \rangle$) and $\langle q \rangle$ to get $\langle n \rangle$ is easy, factoring $\langle n \rangle$ back into $\langle p \rangle$ and $\langle q \rangle$ is computationally infeasible when $\langle p \rangle$ and $\langle q \rangle$ are sufficiently large (e.g., 2048-bit primes).*Encryption and Decryption*: - Messages are encrypted using the public key and can only be decrypted using the private key. This $\langle n \rangle$ is used as the modulus in encryption and decryption.- A public key is created, which includes $\langle n \rangle$ and another number, $\langle e \rangle$, that satisfies certain mathematical conditions. The private key allows decryption of messages encrypted with the public key. Here's an overview of the process: 1.*Generating Keys Using Prime Numbers*: - Two large prime numbers, $\langle p \rangle$ and $\langle q \rangle$, are chosen.- Their product, $\langle n = p \setminus times q \rangle$, is calculated.- A private key is derived using $\langle p \rangle$, $\langle q \rangle$, and $\langle e \rangle$. Here's how they are used: ---- ### *1.2.--- ### *2.