Properties of Nanomaterials: Nanomaterials have the structural features in between of those of atoms and the bulk materials. (12): Fluorescence emission of (CdSe) ZnS quantum dots of various sizes and absorption spectra of various sizes and shapes of gold nanoparticles The optical properties of nanomaterials depend on parameters such as feature size, shape, surface characteristics, and other variables including doping and interaction with the surrounding environment or other nanostructures. Due to their small dimensions, nanomaterials have extremely large surface area to volume ratio, which makes a large to be the surface or interfacial atoms, resulting in more "surface" dependent material properties. Especially when the sizes of nanomaterials are comparable to length, the entire material will be affected by the 30 surface properties of nanomaterials. This in turn may enhance or modify the properties of the bulk materials. For example, metallic nanoparticles can be used as very active catalysts. Chemical sensors from nanoparticles and nanowires enhanced the sensitivity and sensor selectivity. The nanometer feature sizes of nanomaterials also have spatial confinement effect on the materials, which bring the quantum effects. The energy band structure and charge carrier density in the materials can be modified quite differently from their bulk and in turn will modify the electronic and optical properties of the materials. For example, lasers and light emitting diodes (LED) from both of the quantum dots and quantum wires are very promising in the future optoelections. High density information storage using quantum dot devices is also a fast developing area. Reduced imperfections are also an important factor in determination of the properties of the nanomaterials. Nanosturctures and Nanomaterials favors of a self-purification process in that the impurities and intrinsic material defects will move to near the surface upon thermal annealing. This increased materials perfection affects the properties of nanomaterials. For example, the chemical stability for certain nanomaterials may be enhanced, the mechanical properties of nanomaterials will be better than the bulk materials. The superior mechanical properties of carbon nanotubes are well known. Due to their nanometer size, nanomaterials are already known to have many novel properties. Many novel applications of the nanomaterials rose from these novel properties have also been proposed. Optical properties: One of the most fascinating and useful aspects of nanomaterials is their optical properties. Applications based on optical properties of nanomaterials include optical detector, laser, sensor, imaging, phosphor, display, solar cell, In this class of material, polymers filled with silicate platelets exhibit the best mechanical properties and are of the greatest economic relevance. The larger the particles of the filler or agglomerates, the poorer are the properties obtained. Although, potentially, the best composites are those filled with nanofibers or nanotubes, experience teaches that sometimes such composites have the least ductility. On the other hand, by using carbon nanotubes it is possible to produce composite fibers with extremely high strength and strain at rupture. Among the most exciting nanocomposites are the polymer- ceramic nanocomposites, where the ceramic phase is platelet-shaped. This type of composite is preferred in nature, and is found in the structure of bones, where it consists of crystallized mineral platelets of a few nanometers thickness that are bound together with collagen as the matrix. Composites consisting of a polymer matrix and defoliated phyllosilicates exhibit excellent mechanical and thermal properties. Magnetic properties: Bulk gold and Pt are non-magnetic, but at the nano size they are magnetic. Surface atoms are not only different to bulk atoms, but they can also be modified by interaction with

other chemical species, that is, by capping the nanoparticles. This phenomenon opens the possibility to modify the physical properties of the nanoparticles by capping them with appropriate molecules. Actually, it should be possible that non-ferromagnetic bulk materials exhibit ferromagnetic-like behavior when prepared in nano range. One can obtain magnetic nanoparticles of Pd, Pt and the surprising case of Au (that is diamagnetic in bulk) from non-magnetic bulk materials. In the case of Pt and Pd, the ferromagnetism arises from the structural changes associated with size effects. Disadvantages of Nanomaterials: ? Instability of the particles Retaining the active metal nanoparticles is highly challenging, as the kinetics associated with nanomaterials is rapid. In order to retain nanosize of particles, they are encapsulated in some other matrix. Nanomaterials are thermodynamically metastable and lie in the region of high-energy local-minima. Hence they are prone to attack and undergo transformation. These include poor corrosion resistance, high solubility, and phase change of nanomaterials. This leads to deterioration in properties and retaining the structure becomes challenging. Fine metal particles act as strong explosives owing to their high surface area coming in direct contact with oxygen. Their exothermic combustion can easily cause explosion. ? Impurity - Because nanoparticles are highly reactive, they inherently interact with impurities as well. In addition, encapsulation of nanoparticles becomes necessary when they are synthesized in a solution (chemical route). The stabilization of nanoparticles occurs because of a non-reactive species engulfing the reactive nano-entities. Thereby, these secondary impurities become a part of the synthesized nanoparticles, and synthesis of pure Electrical Properties: Electrical Properties of Nanoparticles" discuss about fundamentals of electrical conductivity in nanotubes and nanorods, carbon nanotubes, photoconductivity of nanorods, electrical conductivity of nanocomposites. As the nanotubes have different lengths, then with increasing protrusion of the fiber bundle an increasing number of carbon nanotubes will touch the surface of the mercury droplet and contribute to the electrical current transport photocatalysis, photoelectrochemistry and biomedicine CdSe Nanoparticles 2.3nm 5.5nm 1.0- 0.8- Gold Nanoparticles 06- 15nm nanospheres 30nm nanospheres 04- 2.5AR nanorods -4.5AR nanorods 7.5AR nanorods 02- Photo Felice Frankel 0.0- 400 500 600 700 800 900 1000 1100 1200 1300 Wavelength (nm) Fig. This is mainly due to the nanometer size of the materials which render them: (i) large fraction of surface atoms; (ii) high surface energy; (iii) spatial confinement; (iv) reduced imperfections, which do not exist in the corresponding bulk materials. As the lengths and orientations of the carbon nanotubes are different, they touch the surface of the mercury at different times, which provides two sets of information: (i) the influence of carbon nanotube length on the resistance; and (ii) the resistances of the different nanotubes. While most microstructured materials have similar properties to the corresponding bulk materials, the properties of materials with nanometer dimensions are significantly different from those of atoms and bulks materials. One interesting method which can be used to demonstrate the steps in conductance is the mechanical thinning of a nanowire and measurement of the electrical current at a constant applied voltage. The important point here is that, with decreasing diameter of the wire, the number of electron wave modes contributing to the electrical conductivity is becoming increasingly smaller by well-defined guantized steps.(13): Electrical behavior of naotubes In electrically conducting carbon nanotubes, only one electron wave mode is observed which transport the electrical current. However, when an anisotropy is added to the nanoparticle, such as

growth of nanorods, the optical properties of the nanoparticles change dramatically. With the CdSe semiconductor nanoparticles, a simple change in size alters the optical properties of the nanoparticles. When metal nanoparticles are enlarged, their optical properties change only slightly as observed for the different samples of gold nanospheres. (12) Exemplifies the difference in the optical properties of metal and semiconductor nanoparticles. Likewise, shape can have dramatic influence on optical properties of metal nanostructures. Metal Semiconductor Graphite Fig. Fig.