خدمة تلخيص النصوص العربية أونلاين،قم بتلخيص نصوصك بضغطة واحدة من خلال هذه الخدمة
3 Sum and direct sum of Ideals In this section we discuss the concept of the sum of ideals (right ideals, left ideals) in a ring R. Definition...,R,, be afamily of rings, and let R = R1 X R2 X" X R,, be their direct product. Let R? E R,). Then R -- is a direct sum of ideals R?, and R? R, as rings. On the other hand, fR = (R)17...IA,, adirect sum of ideals ofR, then R A1 X A2 X X A,,, the direct product oftheA,'s considered as rings on their own right. Proof Clearly, R R a R. Let xERrfl j*, Then x=(0,0,...,a,,0,...,0)(a1,a2,...,a,_1,0,a,+1,...,a,J. This gives a, = 0 and, hence, x =0. Therefore, 198 Ideals and bomoinorpldsns For the second part we note that ifxE R, then x can be uniquely expressed asa1+a2++ a,a,EA,, by Because and onto. Also, if x,y isdirect,f is well defined. It is also clearthatf is both 1-1 (R)17..IA,, thenf(x + y) =f(x) +f(y). To show we need to note that if a1 + since a,b, E A, fl 4 (0). This remark then immediately yields that f(xy) =f(x)f(y). Hence,f is an isomorphism. 0 Thedirect sumR -- (R) 17..1A,is also call ed the (internal) direct swn of idealsA,inR, (external) direct sum of the family of rings A,, i -- 1,2,...,n. In the tatter case the notation A1 (R)A2 0... 0 A,, is also frequently used. The context will make clear the sense in which the term "direct sum" is used.If A,,A2 A,, are right ideals in a ring R, then S(a1 +a2+ +a,,Ia,EA,, i= 1,2 n) is the of right ideals A1,A2 A,, Proof It is clear that (a, + a2 + + a,ja, E A,, i= 1,...,n) isa right ideal in R. Also, if a,EA,, then a1=a1 in S, and, hence, A, C S. Similarly, each A,, i 2,...,n, is contained in S. Further, if Tis any right ideal in R containing each A,, then obviouslyT S. Thus, S is the intersection of all the right ideals in R containing each A,.LeIA, ,A2,....A,, beafa,nilyofright ideals in a ringR.is a minimal right ideal, then I is generated by any nonzero element of!.3.2 Theorem.LetA1 right (or left) ideals inaringR.
3 Sum and direct sum of Ideals
In this section we discuss the concept of the sum of ideals (right ideals, left
ideals) in a ring R.
Definition. LeIA, ,A2,....A,, beafa,nilyofright ideals in a ringR. Then the
smallest right ideal of R containing each A,, 1 i
n (that is, the inter-
section of all the right ideals in R containing each A,), is called the sum of
A,,A2
3.1 Theorem. If A,,A2 A,, are right ideals in a ring R, then
S(a1 +a2+ +a,,Ia,EA,, i= 1,2 n) is the of right ideals
A1,A2 A,,
Proof It is clear that
(a, + a2 + + a,ja, E A,, i= 1,...,n)
isa right ideal in R. Also, if a,EA,, then a1=a1 in S, and,
hence, A, C S. Similarly, each A,, i 2,...,n, is contained in S. Further, if
Tis any right ideal in R containing each A,, then obviouslyT S. Thus, S
is the intersection of all the right ideals in R containing each A,. 0
Notation. The sum of right (or left) ideals A1 ,A2,...,A,, in a ring R is
denoted by A, + A2 + + A,,. From the definition of the sum it is clear
that the order of A,'s in A, + A2 + + A,, is immaterial. We write
A A = of right (or left) ideals in a ring R is called a
direct sum (leach element a E A is uniquely expressible in the for,n
17_,a,. a, C A,, I I n. IfthesumA = LI,is a direct sum, we write it as
A=A,®A2®
Note. One can similarly define the sum and direct sum of an infinite
family of right (left) ideals in a ring R. Although no extra effort is needed
to talk about this, we prefer to postpone it to Chapter 14, where we
discuss sum and direct sum of a more general family.
3.2 Theorem.LetA1 right (or left) ideals inaringR. Then
the following are equivalent:
Sum and direct sum of Ideals
(I) A — is a direct sum.
(ii) ff0— E7_1a,, then a,=0, i= l,2....,n.
(iii) fl (0), i 1,2,...,n.
Proof (I) : (ii) Follows from definition of direct sum.
(ii) (iii) Let x E fl Then
x— a1+ a,_1+ a,, A,.
Thus,
Then by (ii) we get x =0.
Let a=a1+a2+'"+a,, and a=b1+b2+"'+b,,,
where i='l,2,...,n. Then O=(a1—b1)+(a2—b2)+"+
(a, — b,). This gives
a1 —b1 EA1
Hence, a1 — b,. Similarly, a2 b2,...,a,, = b,,. Hence, A direct sum. 0
is a
3.3 Theorem. Let 1,R2,. ..,R,, be afamily of rings, and let R = R1 X
R2 X" X R,, be their direct product. Let R? E
R,). Then R — is a direct sum of ideals R?, and R? R, as
rings. On the other hand, fR = ®17...IA,, adirect sum of ideals ofR, then
R A1 X A2 X X A,,, the direct product oftheA,'s considered as rings
on their own right.
Proof Clearly, R
R a R. Let
xERrfl
j*,
Then
x=(0,0,...,a,,0,...,0)(a1,a2,...,a,_1,0,a,+1,...,a,J.
This gives a, = 0 and, hence, x =0. Therefore,
198 Ideals and bomoinorpldsns
For the second part we note that ifxE R, then x can be uniquely expressed asa1+a2++ a,a,EA,,
by
Because and onto. Also, if x,y isdirect,f is well defined. It is also clearthatf is both 1-1
®17..IA,, thenf(x + y) =f(x) +f(y). To show
we need to note that if a1 +
since a,b, E A, fl 4 (0). This remark then immediately yields that
f(xy) =f(x)f(y). Hence,f is an isomorphism. 0
Thedirect sumR — ® 17..1A,is also call ed the (internal) direct swn of
idealsA,inR,
(external) direct sum of the family of rings A,, i — 1,2,...,n. In the tatter
case the notation A1 ®A2 0... 0 A,, is also frequently used. The context
will make clear the sense in which the term "direct sum" is used.
Definition. A right (left) ideal fin a ring R is coiled minimal jf(i) I # (0),
and (ii) if I is a nonzero right (left) ideal of R contained in I, then I — I.
It is clear that if! is a minimal right ideal, then I is generated by any
nonzero element of!. Indeed, if! is a right ideal of R with the property that
each nonzero element generates!, then! is minimal. To see this, let Jbe a
right ideal of R such that 0 # IC I. Suppose 0 # a E J. By assumption,
I (a), C I, so I — I.
If R is a division ring, then R itself is a minimal right ideal as well as a
minimal left ideal. A nontrivial example of a minimal right ideal is
تلخيص النصوص العربية والإنجليزية اليا باستخدام الخوارزميات الإحصائية وترتيب وأهمية الجمل في النص
يمكنك تحميل ناتج التلخيص بأكثر من صيغة متوفرة مثل PDF أو ملفات Word أو حتي نصوص عادية
يمكنك مشاركة رابط التلخيص بسهولة حيث يحتفظ الموقع بالتلخيص لإمكانية الإطلاع عليه في أي وقت ومن أي جهاز ماعدا الملخصات الخاصة
نعمل علي العديد من الإضافات والمميزات لتسهيل عملية التلخيص وتحسينها
تعد مهارة التواصل من المهارات المهمة التي يعتمد عليها الإنسان، سواء على الصعيد المهني او الشخصي. كما...
The doctor is very brilliant . She told us how to control the sugar , gave advices to my son and tol...
تعتبر وفيات الأطفال واعتلال صحتهم من القضايا الصحية العاجلة التي تتطلب فهمًا عميقًا للعوامل المتعددة...
القطاع الزراعي يعتبر القطاع الزراعي بشقيه الحيواني و النباتي من أهم القطاعات في السودان حيث يضم 80...
يبدو أن نهاية حقبة نتنياهو قد اقتربت فعلا هذه المرة. إدارة ترامب تعتقد أن الضربات الأخيرة على إيران ...
تؤثر الألعاب الإلكترونية بشكل سلبي على المراهقين، خاصة في حال استخدامها بشكل مفرط أو عند اختيار ألعا...
إقليم تيغراي الإثيوبي. هذه التوترات تأتي على خلفية تباين أهداف الدولتين خلال الحرب في تيغراي، حيث سع...
إيميل A FORMAL EMAIL که تحمل From: Antonio Ricci [[email protected]] The Priory Language Sch...
لم يتفق الباحثون على تعريف جامع للشيخوخة، وذلك لأنها ليست من الظواهر الثابتة التي تحدث في المراحل ال...
وتناولت دراسة (فياض، والزائدي 2009) الأزمة المالية العالمية وأثرها على أسعار النفط الخام، تناولت بش...
تعتبـــر التغذية الصحية مهمة جدا خلال الســـنتين الاولى من عمر الطفل حيث يتطور النمو العقلي والجســـ...
ﻦ ﷲ، إﻻ إﻟﮫ ﻻ ﯾﺎﻣﻮﺳﻰ: ﻗُﻞ ْ ﻗﺎل: ﺑﮫ، وأدﻋُﻮك َ أذﻛﺮُك َ ﺷﯿﺌًﺎ ﻋَﻠﱠﻤﻨﻲ ؟ ھﺬا ﯾﻘﻮﻟﻮن ﻋ ِ ﺒﺎدِك َ ﻛﻞ ﱡ ...