Lakhasly

Online English Summarizer tool, free and accurate!

Summarize result (0%)

In ancient days two aviators procured to themselves wings. Daedalus flew safely through the middle air, and was duly honored in his landing. Icarus soared upwards to the sun till the wax melted which bound his wings, and his flight ended in a fiasco. In weighing their achievements perhaps there is something to be said for Icarus. The classic authorities tell us, of course, that he was only “doing a stunt”; but I prefer to think of him as the man who certainly brought to light a serious constructional defect in the flying-machines of his day [and] we may at least hope to learn from his journey some hints to build a better machine.

—Sir Arthur Eddington, Stars & Atoms (1927)

2For millennia, the idea of being able to fly occupied human dreams and fantasies. Waddling around on Earth’s surface as majestic birds flew overhead, perhaps we developed a form of wing envy. One might even call it wing worship.

3You needn’t look far for evidence. For most of the history of broadcast television in America, when a station signed off for the night, it didn’t show somebody walking erect and bidding farewell; instead it would play the “Star Spangled Banner” and show things that fly, such as birds soaring or Air Force jets whooshing by. The United States even adopted a flying predator as a symbol of its strength: the bald eagle, which appears on the back of the dollar bill, the quarter, the Kennedy half dollar, the Eisenhower dollar, and the Susan B. Anthony dollar. There’s also one on the floor of the Oval Office in the White House. Our most famous superhero, Superman, can fly upon donning blue pantyhose and a red cape. When you die, if you qualify, you might just become an angel—and everybody knows that angels (at least the ones who have earned their wings) can fly. Then there’s the winged horse Pegasus; the wing-footed Mercury; the aerodynamically unlikely Cupid; and Peter Pan and his fairy sidekick, Tinkerbell.

4Our inability to fly often goes unmentioned in textbook comparisons of human features with those of other species in the animal kingdom. Yet we are quick to use the word “flightless” as a synonym for “hapless” when describing such birds as the dodo and the booby, which tend to find themselves on the wrong end of evolutionary jokes. We did, however, ultimately learn to fly because of the technological ingenuity afforded by our human brains. And of course, while birds can fly, they are nonetheless stuck with bird brains. But this self-aggrandizing line of reasoning is somewhat flawed, because it ignores all the millennia that we were technologically flightless.

5I remember as a student in junior high school reading that the famed physicist Lord Kelvin, at the turn of the twentieth century, had argued the impossibility of self-propelled flight by any device that was heavier than air. Clearly this was a myopic prediction. But one needn’t have waited for the invention of the first airplanes to refute the essay’s premise. One merely needed to look at birds, which have no trouble flying and, last I checked, are all heavier than air.

6If something is not forbidden by the laws of physics, then it is, in principle, possible, regardless of the limits of one’s technological foresight. The speed of sound in air ranges from seven hundred to eight hundred miles per hour, depending on the atmospheric temperature. No law of physics prevents objects from going faster than Mach 1,1 the speed of sound. But before the sound “barrier” was broken in 1947 by Charles E. “Chuck” Yeager, piloting the Bell X-1 (a US Army rocket plane), much claptrap2 was written about the impossibility of objects moving faster than the speed of sound. Meanwhile, bullets fired by high-powered rifles had been breaking the sound barrier for more than a century. And the crack of a whip or the sound of a wet towel snapping at somebody’s buttocks in the locker room is a mini sonic boom, created by the end of the whip or the tip of the towel moving through the air faster than the speed of sound. Any limits to breaking the sound barrier were purely psychological and technological.

7During its lifetime, the fastest winged aircraft by far was the space shuttle, which, with the aid of detachable rockets and fuel tanks, exceeded Mach 203 on its way to orbit. Propulsionless on return, it fell back out of orbit, gliding safely down to Earth. Although other craft routinely travel many times faster than the speed of sound, none can travel faster than the speed of light. I speak not from a naiveté about technology’s future but from a platform built upon the laws of physics, which apply on Earth as they do in the heavens. Credit the Apollo astronauts who went to the Moon with attaining the highest speeds at which humans have ever flown: about seven miles per second at the end of the rocket burn that lifted their craft beyond low Earth orbit. This is a paltry 1/250 of one percent of the speed of light. Actually, the real problem is not the moat that separates these two speeds but the laws of physics that prevent any object from ever achieving the speed of light, no matter how inventive your technology. The sound barrier and the light barrier are not equivalent limits on invention.

8The Wright brothers of Ohio are, of course, generally credited with being “first in flight” at Kitty Hawk, North Carolina, as that state’s license-plate slogan reminds us. But this claim needs to be further delineated. Wilbur and Orville Wright were the first to fly a heavier-than-air, engine-powered vehicle that carried a human being—Orville, in this case—and that did not land at a lower elevation than its takeoff point. Previously, people had flown in balloon gondolas and in gliders and had executed controlled descents from the sides of cliffs, but none of those efforts would have made a bird jealous. Nor would Wilbur and Orville’s first trip have turned any bird heads. The first of their four flights—at 10:35 A.M. eastern time on December 17, 1903—lasted twelve seconds, at an average speed of 6.8 miles per hour against a 30-mile-per-hour wind. The Wright Flyer, as it was called, had traveled 120 feet, not even the length of one wing on a Boeing 747.

9Even after the Wright brothers went public with their achievement, the media took only intermittent notice of it and other aviation firsts. As late as 1933—six years after Lindbergh’s historic solo flight across the Atlantic—H. Gordon Garbedian ignored airplanes in the otherwise prescient introduction to his book Major Mysteries of Science:

Present day life is dominated by science as never before. You pick up a telephone and within a few minutes you are talking with a friend in Paris. You can travel under sea in a submarine, or circumnavigate the globe by air in a Zeppelin. The radio carries your voice to all parts of the earth with the speed of light. Soon, television will enable you to see the world’s greatest spectacles as you sit in the comfort of your living room.

10But some journalists did pay attention to the way flight might change civilization. After the Frenchman Louis Blériot crossed the English Channel from Calais to Dover on July 25, 1909, an article on page three of the New York Times was headlined ”Frenchman Proves Aeroplane No Toy.” The article went on to delineate England’s reaction to the event:

Editorials in the London newspapers buzzed about the new world where Great Britain’s insular4 strength is no longer unchallenged; that the aeroplane is not a toy but a possible instrument of warfare, which must be taken into account by soldiers and statesmen, and that it was the one thing needed to wake up the English people to the importance of the science of aviation.

11The guy was right. Thirty-five years later, not only had airplanes been used as fighters and bombers in warfare but the Germans had taken the concept a notch further and invented the V-2 to attack London. Their vehicle was significant in many ways. First, it was not an airplane; it was an unprecedentedly large missile. Second, because the V-2 could be launched several hundred miles from its target, it basically birthed the modern rocket. And third, for its entire airborne journey after launch, the V-2 moved under the influence of gravity alone; in other words, it was a suborbital ballistic missile, the fastest way to deliver a bomb from one location on Earth to another. Subsequently, Cold War “advances” in the design of missiles enabled military power to target cities on opposite sides of the world. Maximum flight time? About forty-five minutes—not nearly enough time to evacuate a targeted city.

12While we can say they’re suborbital, do we have the right to declare missiles to be flying? Are falling objects in flight? Is Earth “flying” in orbit around the Sun? In keeping with the rules applied to the Wright brothers, a person must be onboard the craft and it must move under its own power. But there’s no rule that says we cannot change the rules.

13Knowing that the V-2 brought orbital technology within reach, some people got impatient. Among them were the editors of the popular, family-oriented magazine Collier’s, which sent two journalists to join the engineers, scientists, and visionaries gathered at New York City’s Hayden Planetarium on Columbus Day, 1951, for its seminal Space Travel Symposium. In the March 22, 1952, issue of Collier’s, in a piece titled “What Are We Waiting For?” the magazine endorsed the need for and value of a space station that would serve as a watchful eye over a divided world:

In the hands of the West a space station, permanently established beyond the atmosphere, would be the greatest hope for peace the world has ever known. No nation could undertake preparations for war without the certain knowledge that it was being observed by the ever-watching eyes aboard the “sentinel in space.” It would be the end of the Iron Curtains5 wherever they might be.

14We Americans didn’t build a space station; instead we went to the Moon. With this effort, our wing worship continued. Never mind that Apollo astronauts landed on the airless Moon, where wings are completely useless, in a lunar module named after a bird. A mere sixty-five years, seven months, three days, five hours, and forty-three minutes after Orville left the ground, Neil Armstrong gave his first statement from the Moon’s surface: “Houston, Tranquility Base here. The Eagle has landed.”

15The human record for “altitude” does not go to anybody for having walked on the Moon. It goes to the astronauts of the ill-fated Apollo 13. Knowing they could not land on the Moon after the explosion in their oxygen tank, and knowing they did not have enough fuel to stop, slow down, and head back, they executed a single figure-eight ballistic trajectory around the Moon, swinging them back toward Earth. The Moon just happened to be near apogee, the farthest point from Earth in its elliptical orbit. No other Apollo mission (before or since) went to the Moon during apogee, which granted the Apollo 13 astronauts the human altitude record. (After calculating that they must have reached about 245,000 miles “above” Earth’s surface, including the orbital distance from the Moon’s surface, I asked Apollo 13 commander Jim Lovell, “Who was on the far side of the command module as it rounded the Moon? That single person would hold the altitude record.” He refused to tell.)

16In my opinion, the greatest achievement of flight was not Wilbur and Orville’s aeroplane, nor Chuck Yeager’s breaking of the sound barrier, nor the Apollo 11 lunar landing. For me, it was the launch of Voyager 2, which ballistically6 toured the solar system’s outer planets. During the flybys, the spacecraft’s slingshot trajectories stole a little of Jupiter’s and Saturn’s orbital energy to enable its rapid exit from the solar system. Upon passing Jupiter in 1979, Voyager’s speed exceeded forty thousand miles an hour, sufficient to escape the gravitational attraction of even the Sun. Voyager passed the orbit of Pluto in 1993 and has now entered the realm of interstellar space. Nobody happens to be onboard the craft, but a gold phonograph record attached to its side is etched with the earthly sounds of, among many things, the human heartbeat. So with our heart, if not our soul, we fly ever farther.


Original text

In ancient days two aviators procured to themselves wings. Daedalus flew safely through the middle air, and was duly honored in his landing. Icarus soared upwards to the sun till the wax melted which bound his wings, and his flight ended in a fiasco. In weighing their achievements perhaps there is something to be said for Icarus. The classic authorities tell us, of course, that he was only “doing a stunt”; but I prefer to think of him as the man who certainly brought to light a serious constructional defect in the flying-machines of his day [and] we may at least hope to learn from his journey some hints to build a better machine.


—Sir Arthur Eddington, Stars & Atoms (1927)


2For millennia, the idea of being able to fly occupied human dreams and fantasies. Waddling around on Earth’s surface as majestic birds flew overhead, perhaps we developed a form of wing envy. One might even call it wing worship.


3You needn’t look far for evidence. For most of the history of broadcast television in America, when a station signed off for the night, it didn’t show somebody walking erect and bidding farewell; instead it would play the “Star Spangled Banner” and show things that fly, such as birds soaring or Air Force jets whooshing by. The United States even adopted a flying predator as a symbol of its strength: the bald eagle, which appears on the back of the dollar bill, the quarter, the Kennedy half dollar, the Eisenhower dollar, and the Susan B. Anthony dollar. There’s also one on the floor of the Oval Office in the White House. Our most famous superhero, Superman, can fly upon donning blue pantyhose and a red cape. When you die, if you qualify, you might just become an angel—and everybody knows that angels (at least the ones who have earned their wings) can fly. Then there’s the winged horse Pegasus; the wing-footed Mercury; the aerodynamically unlikely Cupid; and Peter Pan and his fairy sidekick, Tinkerbell.


4Our inability to fly often goes unmentioned in textbook comparisons of human features with those of other species in the animal kingdom. Yet we are quick to use the word “flightless” as a synonym for “hapless” when describing such birds as the dodo and the booby, which tend to find themselves on the wrong end of evolutionary jokes. We did, however, ultimately learn to fly because of the technological ingenuity afforded by our human brains. And of course, while birds can fly, they are nonetheless stuck with bird brains. But this self-aggrandizing line of reasoning is somewhat flawed, because it ignores all the millennia that we were technologically flightless.


5I remember as a student in junior high school reading that the famed physicist Lord Kelvin, at the turn of the twentieth century, had argued the impossibility of self-propelled flight by any device that was heavier than air. Clearly this was a myopic prediction. But one needn’t have waited for the invention of the first airplanes to refute the essay’s premise. One merely needed to look at birds, which have no trouble flying and, last I checked, are all heavier than air.


6If something is not forbidden by the laws of physics, then it is, in principle, possible, regardless of the limits of one’s technological foresight. The speed of sound in air ranges from seven hundred to eight hundred miles per hour, depending on the atmospheric temperature. No law of physics prevents objects from going faster than Mach 1,1 the speed of sound. But before the sound “barrier” was broken in 1947 by Charles E. “Chuck” Yeager, piloting the Bell X-1 (a US Army rocket plane), much claptrap2 was written about the impossibility of objects moving faster than the speed of sound. Meanwhile, bullets fired by high-powered rifles had been breaking the sound barrier for more than a century. And the crack of a whip or the sound of a wet towel snapping at somebody’s buttocks in the locker room is a mini sonic boom, created by the end of the whip or the tip of the towel moving through the air faster than the speed of sound. Any limits to breaking the sound barrier were purely psychological and technological.


7During its lifetime, the fastest winged aircraft by far was the space shuttle, which, with the aid of detachable rockets and fuel tanks, exceeded Mach 203 on its way to orbit. Propulsionless on return, it fell back out of orbit, gliding safely down to Earth. Although other craft routinely travel many times faster than the speed of sound, none can travel faster than the speed of light. I speak not from a naiveté about technology’s future but from a platform built upon the laws of physics, which apply on Earth as they do in the heavens. Credit the Apollo astronauts who went to the Moon with attaining the highest speeds at which humans have ever flown: about seven miles per second at the end of the rocket burn that lifted their craft beyond low Earth orbit. This is a paltry 1/250 of one percent of the speed of light. Actually, the real problem is not the moat that separates these two speeds but the laws of physics that prevent any object from ever achieving the speed of light, no matter how inventive your technology. The sound barrier and the light barrier are not equivalent limits on invention.


8The Wright brothers of Ohio are, of course, generally credited with being “first in flight” at Kitty Hawk, North Carolina, as that state’s license-plate slogan reminds us. But this claim needs to be further delineated. Wilbur and Orville Wright were the first to fly a heavier-than-air, engine-powered vehicle that carried a human being—Orville, in this case—and that did not land at a lower elevation than its takeoff point. Previously, people had flown in balloon gondolas and in gliders and had executed controlled descents from the sides of cliffs, but none of those efforts would have made a bird jealous. Nor would Wilbur and Orville’s first trip have turned any bird heads. The first of their four flights—at 10:35 A.M. eastern time on December 17, 1903—lasted twelve seconds, at an average speed of 6.8 miles per hour against a 30-mile-per-hour wind. The Wright Flyer, as it was called, had traveled 120 feet, not even the length of one wing on a Boeing 747.


9Even after the Wright brothers went public with their achievement, the media took only intermittent notice of it and other aviation firsts. As late as 1933—six years after Lindbergh’s historic solo flight across the Atlantic—H. Gordon Garbedian ignored airplanes in the otherwise prescient introduction to his book Major Mysteries of Science:


Present day life is dominated by science as never before. You pick up a telephone and within a few minutes you are talking with a friend in Paris. You can travel under sea in a submarine, or circumnavigate the globe by air in a Zeppelin. The radio carries your voice to all parts of the earth with the speed of light. Soon, television will enable you to see the world’s greatest spectacles as you sit in the comfort of your living room.


10But some journalists did pay attention to the way flight might change civilization. After the Frenchman Louis Blériot crossed the English Channel from Calais to Dover on July 25, 1909, an article on page three of the New York Times was headlined ”Frenchman Proves Aeroplane No Toy.” The article went on to delineate England’s reaction to the event:


Editorials in the London newspapers buzzed about the new world where Great Britain’s insular4 strength is no longer unchallenged; that the aeroplane is not a toy but a possible instrument of warfare, which must be taken into account by soldiers and statesmen, and that it was the one thing needed to wake up the English people to the importance of the science of aviation.


11The guy was right. Thirty-five years later, not only had airplanes been used as fighters and bombers in warfare but the Germans had taken the concept a notch further and invented the V-2 to attack London. Their vehicle was significant in many ways. First, it was not an airplane; it was an unprecedentedly large missile. Second, because the V-2 could be launched several hundred miles from its target, it basically birthed the modern rocket. And third, for its entire airborne journey after launch, the V-2 moved under the influence of gravity alone; in other words, it was a suborbital ballistic missile, the fastest way to deliver a bomb from one location on Earth to another. Subsequently, Cold War “advances” in the design of missiles enabled military power to target cities on opposite sides of the world. Maximum flight time? About forty-five minutes—not nearly enough time to evacuate a targeted city.


12While we can say they’re suborbital, do we have the right to declare missiles to be flying? Are falling objects in flight? Is Earth “flying” in orbit around the Sun? In keeping with the rules applied to the Wright brothers, a person must be onboard the craft and it must move under its own power. But there’s no rule that says we cannot change the rules.


13Knowing that the V-2 brought orbital technology within reach, some people got impatient. Among them were the editors of the popular, family-oriented magazine Collier’s, which sent two journalists to join the engineers, scientists, and visionaries gathered at New York City’s Hayden Planetarium on Columbus Day, 1951, for its seminal Space Travel Symposium. In the March 22, 1952, issue of Collier’s, in a piece titled “What Are We Waiting For?” the magazine endorsed the need for and value of a space station that would serve as a watchful eye over a divided world:


In the hands of the West a space station, permanently established beyond the atmosphere, would be the greatest hope for peace the world has ever known. No nation could undertake preparations for war without the certain knowledge that it was being observed by the ever-watching eyes aboard the “sentinel in space.” It would be the end of the Iron Curtains5 wherever they might be.


14We Americans didn’t build a space station; instead we went to the Moon. With this effort, our wing worship continued. Never mind that Apollo astronauts landed on the airless Moon, where wings are completely useless, in a lunar module named after a bird. A mere sixty-five years, seven months, three days, five hours, and forty-three minutes after Orville left the ground, Neil Armstrong gave his first statement from the Moon’s surface: “Houston, Tranquility Base here. The Eagle has landed.”


15The human record for “altitude” does not go to anybody for having walked on the Moon. It goes to the astronauts of the ill-fated Apollo 13. Knowing they could not land on the Moon after the explosion in their oxygen tank, and knowing they did not have enough fuel to stop, slow down, and head back, they executed a single figure-eight ballistic trajectory around the Moon, swinging them back toward Earth. The Moon just happened to be near apogee, the farthest point from Earth in its elliptical orbit. No other Apollo mission (before or since) went to the Moon during apogee, which granted the Apollo 13 astronauts the human altitude record. (After calculating that they must have reached about 245,000 miles “above” Earth’s surface, including the orbital distance from the Moon’s surface, I asked Apollo 13 commander Jim Lovell, “Who was on the far side of the command module as it rounded the Moon? That single person would hold the altitude record.” He refused to tell.)


16In my opinion, the greatest achievement of flight was not Wilbur and Orville’s aeroplane, nor Chuck Yeager’s breaking of the sound barrier, nor the Apollo 11 lunar landing. For me, it was the launch of Voyager 2, which ballistically6 toured the solar system’s outer planets. During the flybys, the spacecraft’s slingshot trajectories stole a little of Jupiter’s and Saturn’s orbital energy to enable its rapid exit from the solar system. Upon passing Jupiter in 1979, Voyager’s speed exceeded forty thousand miles an hour, sufficient to escape the gravitational attraction of even the Sun. Voyager passed the orbit of Pluto in 1993 and has now entered the realm of interstellar space. Nobody happens to be onboard the craft, but a gold phonograph record attached to its side is etched with the earthly sounds of, among many things, the human heartbeat. So with our heart, if not our soul, we fly ever farther.


Summarize English and Arabic text online

Summarize text automatically

Summarize English and Arabic text using the statistical algorithm and sorting sentences based on its importance

Download Summary

You can download the summary result with one of any available formats such as PDF,DOCX and TXT

Permanent URL

ٌYou can share the summary link easily, we keep the summary on the website for future reference,except for private summaries.

Other Features

We are working on adding new features to make summarization more easy and accurate


Latest summaries

مجموعه لاتحتوي ...

مجموعه لاتحتوي على عناصر تسمى - [ ] مجموعة منتهية - [ ] مجموعه وحيده العنصر - [x] مجموعة خاليه ...

Surface tension...

Surface tension it is a measure of the force necessary to stretch or break the surface of a liquid, ...

The human being...

The human being is considered the basic building block of society and the essence of its constructio...

أصبح للجنة العس...

أصبح للجنة العسكرية، ثلاث مستويات كذلك، الأول لرؤساء أركان حرب القوات المسلحة للدول الأعضاء، والثاني...

تعد المملكة الع...

تعد المملكة العربية السعودية أكبر مصدر للنفط في العالم، و يعتمد اقتصادها على القطاع النفطي بشكل كبير...

ارتفاع ثاني أكس...

ارتفاع ثاني أكسيد الكربون في الغلاف الجوي هو زيادة في متوسط درجة حرارة سطح الكوكب ، حيث يوجد الميثان...

حصر المظاهر الس...

حصر المظاهر السلوكية التي تدعو إلى إدخال أساليب الدعم وذلك برصد مظاهر التعثر والقصور كصعوبة الفهم وع...

. Contribution ...

. Contribution to Knowledge: It contributes to the existing body of knowledge on forensic accounting...

مقارنة بين الطا...

مقارنة بين الطاقة المتجددة والطاقة غير التقليدية الناضبة اولاً : الإطار لمفاهيم الطاقة المتجددة والط...

كان من حسن تدبي...

كان من حسن تدبير القائمين على مدرستنا انهم خصصوا لما ساعة في الاسبوع للاشغال اليدوية ، وتلك الساعة ك...

1.1 Introductio...

1.1 Introduction Love and war are two contrasting yet interconnected themes that have been explored ...

الأهمية النسبية...

الأهمية النسبية للخبر ومن هنا نخرج بحقيقة متفق عليها إتفاقا إجماعيا وهي: أنه ليس هناك أهمية عامة م...