لخّصلي

خدمة تلخيص النصوص العربية أونلاين،قم بتلخيص نصوصك بضغطة واحدة من خلال هذه الخدمة

نتيجة التلخيص (50%)

Deterministic Finite Automata Finite Automaton (FA) ?QD = All reachable subsets of QE factoring in ?-closures 2.Idea: To avoid enumerating each member of power set, do "lazy creation of states". 31 q0 q1 0 0,1 q2 1 NFA: ?N 0 1 q0 {q0 ,q1 } {q0 } q1 O {q2 } *q2 O O DFA: ?D 0 1 [q0 ] [q0 ,q1 ] [q0 ] [q0 ,q1 ] [q0 ,q1 ] [q0 ,q2 ] [q0 ,q2 ] [q0 ,q1 ] [q0 ] [q0 ] 1 0 [q0 ,q1 ] 1 [q0 ,q2 ] 0 0 1 Correctness of subset construction Theorem: If D is the DFA constructed from NFA N by subset construction, then L(D) = L(N) ? Proof: ? Show that ?D ({q0 }, w) ? ?N (q0 , w} , for all w ? Using induction on w's length: ? Let w = xa ? ?D ({q0 }, xa) ? ?D ( ?N (q0 , x}, a ) ? ?N (q0 , w} 32 A bad case where #states(DFA) #states(NFA) ? L = {w | w is a binary string such that, the k th symbol from its end is a 1} ? NFA has k+1 states ? But an equivalent DFA needs to have at least 2 k states (Pigeon hole principle) ? m holes and >m pigeons => at least one hole has to contain two or more pigeons 33 o An application: Text Search Applications ? Text indexing ? inverted indexing ? For each unique word in the database, store all locations that contain it using an NFA or a DFA ? Find pattern P in text T ? Example: Google querying ? Extensions of this idea: ? PATRICIA tree, suffix tree 35 Advantages & Caveats for NFA ? Great for modeling regular expressions ? String processing - e.g., grep, lexical analyzer ? Could a non-deterministic state machine be implemented in practice? ? Probabilistic models could be viewed as extensions of nondeterministic state machines (e.g., toss of a coin, a roll of dice) ? They are not the same though ? A parallel computer could exist in multiple "states" at the same time 36 A few properties of DFAs and NFAs ?A clamping circuit waits for a "1" input, and turns on forever. However, to avoid clamping on spurious noise, we'll design a DFA that waits for two consecutive 1s in a row before clamping on. ? Build a DFA for the following language: L = { w | w is a bit string which contains the substring 11} ? State Design: ? q0 : start state (initially off), also means the most recent input was not a 1 ? q1 : has never seen 11 but the most recent input was a 1 ? q2 : has seen 11 at least once ? Example #3 ? Build a DFA for the following language: L = { w | w is a binary string that has even number of 1s and even number of 0s} 14 Extension of transitions to paths ? ? (q, w) = destination state from state q on input string w. ? ? (q, wa) = ? (?(q, w), a) ? Work out example #3 using the input sequence w = 10010, a = 1: ? ? (q0 , wa) = ? 15 Language of a DFA A DFA A accepts string w if there is a path from q0 to an accepting (or final) state that is labeled by w. ? i.e., L(A) = { w | ?(q0 ,w) ? F } ? i.e., L(A) = all strings that lead to an accepting state from q0. 16 o Non-Deterministic Finite Automaton Non-deterministic Finite Automata (NFA) ? A Non-deterministic Finite Automaton (NFA) is called non-deterministic because the machine can exist in more than one state at the same time. ? Transitions could be non-deterministic ? Each transition function therefore maps to a set of states. 18 qi 1 1 qj qk ... Non-deterministic Finite Automata (NFA) ? An NFA consists of: ? Q = A finite set of states ? ? = A finite set of input symbols (alphabet) ? q0 = A start state ? F = Set of accepting states ? ? = A transition function, which is a mapping between Q x ? -> subset of Q ? An NFA is also defined by the 5-tuple: ? {Q, ? , q0 , F, ? } 19 How to use an NFA? ? Input: a word w in ? ? Question: Is w accepted by the NFA? ? Steps: ? Start at the start state q0 ? For every input symbol in the word w do ? Determine all possible next states from all current states, given the current input symbol in w and the transition function ? If after all symbols in w are consumed and if at least one of the current states is a final state then accept w; ? Otherwise, reject w. 20 NFA for strings containing 01 21 q0 start q1 0 0,1 0,1 1 q2 Final state o Q = {q0 ,q1 ,q2 } o ? = {0,1} o start state = q0 o F = {q2 } o Transition table {q2 {q } 2 *q } 2 {q2 q ? } 1 {q0 {q } 0 ,q1 q } 0 0 1 states symbols What is an "error state"?A DFA for recognizing the key word "price" ? An NFA for the same purpose: ? Transitions into a dead state are implicit 22 q0 p q1 r q2 i q3 c q4 e q5 qe Any other input symbol q0 p q1 r q2 i q3 c q4 e q5 Any symbol Example #3 ? Build an NFA for the following language: L = { w | w ends in 01} ? ? ? Other examples ? Keyword recognizer (e.g., if, then, else, while, for, include, etc.) ? Strings where the first symbol is present somewhere later on at least once 23 Extension of ? to NFA Paths ? Basis: ? (q, ?) = {q} ? Induction: ? Let ? (q0 , w) = {p1 , p2..., pk } ? ? (pi , a) = Si for I =1, 2..., k ? Then, ? (q0 , wa) = S1 U S2 U ... U Sk 24 Language of an NFA ? An NFA accepts w if there exists at least one path from the start state to an accepting (or final) state that is labeled by w ? L(N) = { w | ?(q0 , w) ? F != ? } 25 Differences between NFA and DFA ? DFA

  1. All transitions are deterministic ? Each transition leads to exactly one state
  2. For each state, transition on all possible symbols (alphabet) should be defined
  3. Accepts input if the last state visited is in F
  4. Harder to construct because of the number of states
  5. Practical implementation is feasible ? NFA
  6. Some transitions could be nondeterministic ? A transition may lead to a more than one state
  7. Not all symbol transitions need to be defined explicitly (if undefined will go to an error state - this is just a design convenience, not to be confused with "nondeterminism") 3.Locate regular languages in the Chomsky Hierarchy 10 The Chomsky Hierarchy 11 Regular (DFA) Contextfree (PDA) Contextsensitive (LBA) Recursively- enumerable (TM) o A containment hierarchy of classes of formal languages Example #1 ?Informally, it is a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream or sequence of input symbols. Practical implementations limited but emerging (e.g., Micron automata processor) 26 Note: NFAs and DFAs are equivalent in power to recognize languages.(All accept Regular Languages) 43 Eliminating ?-transitions Let E = {QE , ?,?E , q0 , FE } be an ?-NFA Goal: To build DFA D = {QD , ?, ?D , {qD }, FD } such that L(D)=L(E) Construction: 1.Equivalence of DFA & NFA ????= {0, 1} ???2.?????4.


النص الأصلي

Deterministic Finite Automata
Finite Automaton (FA)
◼ Informally, it is a state diagram that
comprehensively captures all possible states and
transitions that a machine can take while
responding to a stream or sequence of input
symbols.
◼ Recognizer for “Regular Languages”.
◼ Deterministic Finite Automata (DFA)
◼ The machine can exist in only one state at any given time.
◼ Non-deterministic Finite Automata (NFA)
◼ The machine can exist in multiple states at the same time.
7
Deterministic Finite Automata
◼ A Deterministic Finite Automaton (DFA)
consists of:
◼ Q = A finite set of states
◼ ∑ = A finite set of input symbols (alphabet)
◼ q0 = A start state
◼ F = A set of accepting states
◼ δ = A transition function, which is a mapping
between Q x ∑ → Q
◼ A DFA is defined by the 5-tuple:

8
What does a DFA do on reading an
input string?
◼ Input: a word w in ∑*
◼ Question: Is w accepted by the DFA?
◼ Steps:
◼ Start at the start state, q0
◼ For every input symbol in the sequence w do
◼ Compute the next state from the current state, given
the current input symbol in w and the transition
function
◼ If after all symbols in w are consumed, the
current state is one of the accepting states (F)
then w is accepted;
◼ Otherwise, w is rejected.
9
Regular Languages
◼ Let L(A) be a language recognized by a DFA
A.
◼ Then L(A) is called a “Regular Language”.
◼ Locate regular languages in the Chomsky
Hierarchy
10
The Chomsky Hierarchy
11
Regular
(DFA)
Contextfree
(PDA)
Contextsensitive
(LBA)
Recursively-
enumerable
(TM)
• A containment hierarchy of classes of formal languages
Example #1
◼ Build a DFA for the following language:
◼ L = {w | w is a binary string that contains 01 as a
substring}
◼ Steps for building a DFA to recognize L:
◼ ∑ = {0, 1}
◼ Decide on the states: Q
◼ Designate start state and final state(s)
◼ δ: Decide on the transitions:
◼ Final states are same as “accepting states”.
◼ Other states are same as “non-accepting states”.
12
DFA for strings containing 01
13
q0
start
q1
0
Regular expression: (0+1)01(0+1)
1 0 0,1
1
q2
Accepting
state
• What if the language allows
empty strings?
• What makes this DFA deterministic? • Q = {q0
, q1
, q2
}
• ∑ = {0, 1}
• start state = q0
• F = {q2
}
• Transition table
q2 q2 q2
q1 q1 q2
q0 q1 q0
0 1
states
symbols
Example #2
Clamping Logic:
◼ A clamping circuit waits for a ”1” input, and turns on
forever. However, to avoid clamping on spurious noise,
we’ll design a DFA that waits for two consecutive 1s in a
row before clamping on.
◼ Build a DFA for the following language:
L = { w | w is a bit string which contains the
substring 11}
◼ State Design:
◼ q0
: start state (initially off), also means the most recent
input was not a 1
◼ q1
: has never seen 11 but the most recent input was a 1
◼ q2
: has seen 11 at least once
◼ Example #3
◼ Build a DFA for the following language:
L = { w | w is a binary string that has even number of 1s
and even number of 0s}
14
Extension of transitions to paths
◼ δ (q, w) = destination state from
state q on input string w.
◼ δ (q, wa) = δ (δ(q, w), a)
◼ Work out example #3 using the
input sequence w = 10010, a = 1:
◼ δ (q0
, wa) = ?
15
Language of a DFA
A DFA A accepts string w if there is a path from
q0
to an accepting (or final) state that is
labeled by w.
◼ i.e., L(A) = { w | δ(q0
,w)  F }
◼ i.e., L(A) = all strings that lead to an accepting
state from q0.
16
• Non-Deterministic Finite Automaton
Non-deterministic Finite Automata (NFA)
◼ A Non-deterministic Finite Automaton (NFA) is
called non-deterministic because the machine can
exist in more than one state at the same time.
◼ Transitions could be non-deterministic
◼ Each transition function therefore maps to a set of
states.
18
qi
1
1
qj
qk

Non-deterministic Finite Automata (NFA)
◼ An NFA consists of:
◼ Q = A finite set of states
◼ ∑ = A finite set of input symbols (alphabet)
◼ q0 = A start state
◼ F = Set of accepting states
◼ δ = A transition function, which is a mapping
between Q x ∑ → subset of Q
◼ An NFA is also defined by the 5-tuple:
◼ {Q, ∑ , q0
, F, δ }
19
How to use an NFA?
◼ Input: a word w in ∑

◼ Question: Is w accepted by the NFA?
◼ Steps:
◼ Start at the start state q0
◼ For every input symbol in the word w do
◼ Determine all possible next states from all current states,
given the current input symbol in w and the transition
function
◼ If after all symbols in w are consumed and if at least one of
the current states is a final state then accept w;
◼ Otherwise, reject w.
20
NFA for strings containing 01
21
q0
start
q1
0
0,1 0,1
1
q2
Final
state
• Q = {q0
,q1
,q2
}
•  = {0,1}
• start state = q0
• F = {q2
}
• Transition table
{q2
{q } 2 *q } 2
{q2 q Φ } 1
{q0
{q } 0
,q1 q } 0
0 1
states
symbols
What is an “error state”?
◼ A DFA for recognizing the key word “price”
◼ An NFA for the same purpose:
◼ Transitions into a dead state are implicit
22
q0
p
q1
r
q2
i
q3
c
q4
e
q5
qe
Any other input symbol
q0
p
q1
r
q2
i
q3
c
q4
e
q5
Any symbol
Example #3
◼ Build an NFA for the following language:
L = { w | w ends in 01}
◼ ?
◼ Other examples
◼ Keyword recognizer (e.g., if, then, else, while,
for, include, etc.)
◼ Strings where the first symbol is present
somewhere later on at least once
23
Extension of δ to NFA Paths
◼ Basis: δ (q, ) = {q}
◼ Induction:
◼ Let δ (q0
, w) = {p1
, p2…, pk
}
◼ δ (pi
, a) = Si for I =1, 2..., k
◼ Then, δ (q0
, wa) = S1 U S2 U … U Sk
24
Language of an NFA
◼ An NFA accepts w if there exists at least one
path from the start state to an accepting (or
final) state that is labeled by w
◼ L(N) = { w | δ(q0
, w) ∩ F ≠ Φ }
25
Differences between NFA and DFA
◼ DFA



  1. All transitions are
    deterministic
    ◼ Each transition leads to
    exactly one state

  2. For each state, transition on
    all possible symbols
    (alphabet) should be defined

  3. Accepts input if the last state
    visited is in F

  4. Harder to construct because
    of the number of states

  5. Practical implementation is
    feasible
    ◼ NFA

  6. Some transitions could be nondeterministic
    ◼ A transition may lead to a
    more than one state

  7. Not all symbol transitions need to
    be defined explicitly (if undefined
    will go to an error state – this is
    just a design convenience, not to
    be confused with “nondeterminism”)

  8. Accepts input if one of the last
    states is in F

  9. Generally easier than a DFA to
    construct

  10. Practical implementations limited
    but emerging (e.g., Micron
    automata processor)
    26
    Note: NFAs and DFAs are equivalent in power to recognize languages.
    Equivalence of DFA & NFA
    ◼ Theorem:
    ◼ A language L is accepted by a DFA if and only if it is
    accepted by an NFA.
    ◼ Proof:

  11. If part:
    ◼ Prove by showing every NFA can be converted to an
    equivalent DFA.

  12. Only-if part is trivial:
    ◼ Every DFA is a special case of an NFA where each state
    has exactly one transition for every input symbol.
    Therefore, if L is accepted by a DFA, it is accepted by a
    corresponding NFA.
    27
    Proof for the if-part
    ◼ If-part: A language L is accepted by a DFA if it is
    accepted by an NFA
    ◼ rephrasing…
    ◼ Given any NFA N, we can construct a DFA D such
    that L(N) = L(D)
    ◼ How to convert an NFA into a DFA?
    ◼ Observation: In an NFA, each transition maps to a subset
    of states
    ◼ Idea: Represent:
    Each “subset of NFA_states” ➔ a single “DFA_state”
    28
    NFA to DFA by subset construction
    ◼ Let N = {QN
    , ∑, δN
    , q0
    , FN
    }
    ◼ Goal: Build D = {QD
    , ∑, δD
    , {q0
    }, FD
    } s.t. L(D) = L(N)
    ◼ Construction:

  13. QD = all subsets of QN
    (The power set of QN
    )

  14. FD = set of subsets S of QN
    s.t. S∩FN ≠ Φ

  15. δD = for each subset S of QN
    and for each input symbol
    a in ∑:
    ◼ δD
    (S, a) = U δN
    (p, a)
    29
    NFA to DFA construction: Example
    ◼ L = {w | w ends in 01}
    30
    q0 q1
    0
    0,1
    q2
    1
    NFA:
    δN 0 1
    q0
    {q0
    ,q1
    } {q0
    }
    q1 Ø {q2
    }
    *q2 Ø Ø
    DFA:
    δD 0 1
    Ø Ø Ø
    [q0
    ] {q0
    ,q1
    } {q0
    }
    [q1
    ] Ø {q2
    }
    *[q2
    ] Ø Ø
    [q0
    ,q1
    ] {q0
    ,q1
    } {q0
    ,q2
    }
    *[q0
    ,q2
    ] {q0
    ,q1
    } {q0
    }
    *[q1
    ,q2
    ] Ø {q2
    }
    *[q0
    ,q1
    ,q2
    ] {q0
    ,q1
    } {q0
    ,q2
    }
    δD 0 1
    [q0
    ] [q0
    ,q1
    ] [q0
    ]
    [q0
    ,q1
    ] [q0
    ,q1
    ] [q0
    ,q2
    ]
    *[q0
    ,q2
    ] [q0
    ,q1
    ] [q0
    ]

  16. Enumerate all possible subsets

  17. Determine transitions

  18. Retain only those states
    reachable from {q0
    }
    [q0
    ]
    1
    0
    [q0
    ,q1
    ]
    1
    [q0
    ,q2
    ]
    0
    0
    1
    NFA to DFA
    ◼ L = {w | w ends in 01}
    ◼ Idea: To avoid enumerating each member of power set, do “lazy creation
    of states”.
    31
    q0 q1
    0
    0,1
    q2
    1
    NFA:
    δN 0 1
    q0
    {q0
    ,q1
    } {q0
    }
    q1 Ø {q2
    }
    *q2 Ø Ø
    DFA:
    δD 0 1
    [q0
    ] [q0
    ,q1
    ] [q0
    ]
    [q0
    ,q1
    ] [q0
    ,q1
    ] [q0
    ,q2
    ]
    *[q0
    ,q2
    ] [q0
    ,q1
    ] [q0
    ]
    [q0
    ]
    1
    0
    [q0
    ,q1
    ]
    1
    [q0
    ,q2
    ]
    0
    0
    1
    Correctness of subset construction
    Theorem: If D is the DFA constructed from NFA N by
    subset construction, then L(D) = L(N)
    ◼ Proof:
    ◼ Show that δD
    ({q0
    }, w) ≡ δN
    (q0
    , w} , for all w
    ◼ Using induction on w’s length:
    ◼ Let w = xa
    ◼ δD
    ({q0
    }, xa) ≡ δD
    ( δN
    (q0
    , x}, a ) ≡ δN
    (q0
    , w}
    32
    A bad case where #states(DFA) #states(NFA)
    ◼ L = {w | w is a binary string such that, the k
    th
    symbol from its end is a 1}
    ◼ NFA has k+1 states
    ◼ But an equivalent DFA needs to have at least 2
    k
    states
    (Pigeon hole principle)
    ◼ m holes and >m pigeons
    => at least one hole has to contain two or more pigeons
    33
    • An application: Text Search
    Applications
    ◼ Text indexing
    ◼ inverted indexing
    ◼ For each unique word in the database, store
    all locations that contain it using an NFA or a
    DFA
    ◼ Find pattern P in text T
    ◼ Example: Google querying
    ◼ Extensions of this idea:
    ◼ PATRICIA tree, suffix tree
    35
    Advantages & Caveats for NFA
    ◼ Great for modeling regular expressions
    ◼ String processing - e.g., grep, lexical analyzer
    ◼ Could a non-deterministic state machine be
    implemented in practice?
    ◼ Probabilistic models could be viewed as extensions of nondeterministic state machines
    (e.g., toss of a coin, a roll of dice)
    ◼ They are not the same though
    ◼ A parallel computer could exist in multiple “states” at the same
    time
    36
    A few properties of DFAs and NFAs
    ◼ The machine never really terminates.
    ◼ It is always waiting for the next input symbol or making
    transitions.
    ◼ The machine decides when to consume the next symbol from
    the input and when to ignore it.
    ◼ (but the machine can never skip a symbol)
    ◼ => A transition can happen even without really consuming an
    input symbol (think of consuming  as a free token) – if this
    happens, then it becomes an -NFA (see next few slides).
    ◼ A single transition cannot consume more than one (non-)
    symbol.
    37
    • Finite Automata with Epsilon Transitions
    NFA with -Transitions
    ◼ We can allow explicit -transitions in finite automata
    ◼ i.e., a transition from one state to another state without
    consuming any additional input symbol
    ◼ Explicit -transitions between different states introduce
    non-determinism.
    ◼ Makes it easier sometimes to construct NFAs.
    Definition: -NFAs are those NFAs with at least one
    explicit -transition defined.
    ◼ -NFAs have one more column in their transition
    table
    39
    Example of an -NFA
    ◼ -closure of a state q,
    ECLOSE(q), is the set of
    all states (including
    itself) that can be
    reached from q by
    repeatedly making an
    arbitrary number of -
    transitions.
    40
    L = {w | w is either empty or end in 01}
    δE 0 1 
    *q’0 Ø Ø {q’0
    ,q0
    }
    q0
    {q0
    ,q1
    } {q0
    } {q0
    }
    q1 Ø {q2
    } {q1
    }
    *q2 Ø Ø {q2
    }
    ECLOSE(q’0
    )
    ECLOSE(q0
    )
    start
    q0 q1
    0
    0,1
    1
    q2
    ECLOSE(q1
    )
    ECLOSE(q2
    )
    q’
    0

    -NFA Example-1
    Simulate for w = 101
    41
    L = {w | w is either empty or will end in 01}
    To simulate any transition:
    Step 1) Go to all immediate destination states.
    Step 2) From there go to all their -closure states as well.
    δE 0 1 
    *q’0 Ø Ø {q’0
    ,q0
    }
    q0
    {q0
    ,q1
    } {q0
    } {q0
    }
    q1 Ø {q2
    } {q1
    }
    *q2 Ø Ø {q2
    }
    ECLOSE(q’0
    )
    ECLOSE(q0
    )
    start
    q0 q1
    0
    0,1
    1
    q2
    q’
    0
     q0

    q0
    q0

     
    q1
    0
    q2
    1
    q0
    1
    Ø
    1
    x
    -NFA Example-2
    Simulate for w = 1001
    42
    δE 0 1 
    *q’0 Ø Ø {q’0
    ,q0
    ,q3
    }
    q0
    {q0
    ,q1
    } {q0
    } {q0,q3
    }
    q1 Ø {q2
    } {q1
    }
    *q2 Ø Ø {q2
    }
    q3 Ø {q2
    } {q3
    }
    start
    q0 q1
    0
    0,1
    1
    q2
    q’
    0
     
    q3
    1
    Equivalency of DFA, NFA, -NFA
    ◼ Theorem: A language L is accepted by some -NFA
    if and only if L is accepted by some DFA.
    ◼ Implication:
    ◼ DFA ≡ NFA ≡ -NFA
    ◼ (All accept Regular Languages)
    43
    Eliminating -transitions
    Let E = {QE
    , ∑,δE
    , q0
    , FE
    } be an -NFA
    Goal: To build DFA D = {QD
    , ∑, δD
    , {qD
    }, FD
    } such that L(D)=L(E)
    Construction:

  19. QD = All reachable subsets of QE factoring in -closures

  20. qD = ECLOSE(q0
    )

  21. FD = Subsets S in QD
    s.t. S∩FE ≠ Φ

  22. δD = For each subset S of QE
    and for each input symbol a∑:
    ◼ Let R = U δE
    (p, a) // go to destination states
    ◼ δD
    (S, a) = U ECLOSE(r) // from there, take a union of all their -closures
    44
    p in s
    r in R
    Example: -NFA to DFA (1)
    45
    L = {w | w is either empty or will end in 01}
    start
    q0 q1
    0
    0,1
    1
    q2
    q’
    0

    δE 0 1 
    *q’0 Ø Ø {q’0
    ,q0
    }
    q0
    {q0
    ,q1
    } {q0
    } {q0
    }
    q1 Ø {q2
    } {q1
    }
    *q2 Ø Ø {q2
    }
    δD 0 1
    *{q’0
    ,q0
    }

    46
    start
    q0 q1
    0
    0,1
    1
    q2
    q’
    0

    δE 0 1 
    *q’0 Ø Ø {q’0
    ,q0
    }
    q0
    {q0
    ,q1
    } {q0
    } {q0
    }
    q1 Ø {q2
    } {q1
    }
    *q2 Ø Ø {q2
    }
    δD 0 1
    *{q’0
    ,q0
    } {q0
    ,q1
    } {q0
    }
    {q0
    ,q1
    } {q0
    ,q1
    } {q0
    ,q2
    }
    {q0
    } {q0
    ,q1
    } {q0
    }
    *{q0
    ,q2
    } {q0
    ,q1
    } {q0


تلخيص النصوص العربية والإنجليزية أونلاين

تلخيص النصوص آلياً

تلخيص النصوص العربية والإنجليزية اليا باستخدام الخوارزميات الإحصائية وترتيب وأهمية الجمل في النص

تحميل التلخيص

يمكنك تحميل ناتج التلخيص بأكثر من صيغة متوفرة مثل PDF أو ملفات Word أو حتي نصوص عادية

رابط دائم

يمكنك مشاركة رابط التلخيص بسهولة حيث يحتفظ الموقع بالتلخيص لإمكانية الإطلاع عليه في أي وقت ومن أي جهاز ماعدا الملخصات الخاصة

مميزات أخري

نعمل علي العديد من الإضافات والمميزات لتسهيل عملية التلخيص وتحسينها


آخر التلخيصات

بدينا تخزينتنا ...

بدينا تخزينتنا ولم تفارقني الرغبة بان اكون بين يدي رجلين اثنين أتجرأ على عضويهما المنتصبين يتبادلاني...

خليج العقبة هو ...

خليج العقبة هو الفرع الشرقي للبحر الأحمر المحصور شرق شبه جزيرة سيناء وغرب شبه الجزيرة العربية، وبالإ...

فرضية كفاءة الس...

فرضية كفاءة السوق تعتبر فرضية السوق الكفء او فرضية كفاءة السوق بمثابة الدعامة او العمود الفقري للنظر...

‏@Moamen Azmy -...

‏@Moamen Azmy - مؤمن عزمي:موقع هيلخصلك اي مادة لينك تحويل الفيديو لنص https://notegpt.io/youtube-tra...

انا احبك جداً ت...

انا احبك جداً تناول البحث أهمية الإضاءة الطبيعية كأحد المفاهيم الجوهرية في التصميم المعماري، لما لها...

توفير منزل آمن ...

توفير منزل آمن ونظيف ويدعم الطفل عاطفيًا. التأكد من حصول الأطفال على الرعاية الطبية والتعليمية والن...

Le pêcheur et s...

Le pêcheur et sa femme Il y avait une fois un pêcheur et sa femme, qui habitaient ensemble une cahu...

في التاسع من ما...

في التاسع من مايو/أيار عام 1960، وافقت إدارة الغذاء والدواء الأمريكية على الاستخدام التجاري لأول أقر...

أهم نقاط الـ Br...

أهم نقاط الـ Breaker Block 🔹 ما هو الـ Breaker Block؟ • هو Order Block حقيقي يكون مع الاتجاه الرئي...

دوري كمدرب و مس...

دوري كمدرب و مسؤولة عن المجندات ، لا اكتفي باعطاء الأوامر، بل اعدني قدوة في الانضباط والالتزام .فالم...

سادساً: التنسيق...

سادساً: التنسيق مع الهيئة العامة للزراعة والثروة السمكية وفريق إدارة شؤون البيئة لنقل أشجار المشلع ب...

I tried to call...

I tried to call the hospital , it was too early in the morning because I knew I will be late for ...