لخّصلي

خدمة تلخيص النصوص العربية أونلاين،قم بتلخيص نصوصك بضغطة واحدة من خلال هذه الخدمة

نتيجة التلخيص (50%)

Work and Energy Chapter IV Work and Energy The objective of this chapter is to introduce the energy tools used in mechanics to solve problems.Kinetic Energy Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 9 Work and Energy Chapter IV The Kinetic Energy Theorem Ek B - Ek A = ?WAB F ?ext Demonstration Consider a particle moving under the action of a resultant force F -> between A and B. The work done by F -> for an elemental displacement dr -> is : dW = F -> ?Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 18 Work and Energy Chapter IV Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 19 Work and Energy Chapter IV Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 20 Work and Energy Chapter IV Solution Calculation of the total mechanical energy at equilibrium: We know that : ET = Ek + Ep At equilibrium:

  • the velocity of the system is zero V = 0 => Ek = 0
  • and the potential energy of the system Ep = Ep(elastic) + Ep(gravitational) So: Ep = 1 2 kx 2 + mgh NA: Ep = 1 2 200(0.02) 2 + 0.1 x 10 x 0.5 = 1.54 J Hence, the total mechanical energy at equilibrium: ET = Ep = 1.Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 5 Work and Energy Chapter IV B- Work of a variable force When force is variable, the calculation of work for this variable force involves first defining the increment of work, denoted as dW, done by a force F ?No Work Done Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 4 Work and Energy Chapter IV Exercise 1 A body weighing 4 kg ascends a ramp inclined at 30o over a distance of 15 m. The driving force is F = 30 N. Calculate the work done by each force acting on this body.Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 15 Work and Energy Chapter IV Examples of potential energy a) Gravitational potential energy Ep = mgh + Cst If we set Ep =0 for h=0, then the constant (Cst) is equal to 0 Gravitational potential energy m h It is the energy that a body possesses due to its position in a gravitational field Work and Energy Chapter IV b- Elastic Potential Energy It is potential energy stored as a result of deformation of an elastic object such as spring.Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 12 Work and Energy Chapter IV Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 13 Work and Energy Chapter IV Exercise 4 : A particle of mass m moving along a straight trajectory is subjected to a force F(x), the variations of which with respect to x are depicted in figure below.Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 1 Work and Energy Chapter IV A- Work done by a constant force work done by a constant force F -> during a rectilinear displacement AB, is defined as the scalar product of the force F -> and the displacement AB. WAB(F ?0 5 10 15 20 25 30 0,0 0,5 1,0 x(m) F(N) Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 14 Work and Energy Chapter IV 4.Potential energy The kinetic energy Ek of a particle is associated with its motion.dr -> Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 6 Work and Energy Chapter IV Exercise 2: A body m is subjected to a force F -> , moving along the trajectory OABCO, as shown in figure opposite.Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 8 Work and Energy Chapter IV Kinetic energy Ek , is the energy possessed by an object due to its motion.= m dV dt Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 10 Work and Energy Chapter IV We substitute the expression for F -> into equation (): () => dW = m dV dt ?< 0 negative work Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 3 Work and Energy Chapter IV ?acting through an infinitesimal displacement dr ?.Introduction 2.1.?0 <= ?< ?2 ?> 0 ??2 < ?<= ?< 0 ??= 90????3.


النص الأصلي

Work and Energy Chapter IV
Work and Energy
The objective of this chapter is to introduce the energy tools used in mechanics to solve
problems. Indeed, sometimes the fundamental principle of dynamics is not sufficient or
not appropriate to reach a solution.



  1. Introduction

  2. Work Done by a Force
    Work done by a force measures the energy transfer when the force causes an object to
    move.
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 1
    Work and Energy Chapter IV
    A- Work done by a constant force
    work done by a constant force 𝐹

    during a rectilinear displacement 𝐴𝐵, is defined as
    the scalar product of the force 𝐹

    and the displacement 𝐴𝐵.
    𝑊𝐴𝐵(𝐹
    Ԧ
    ) = 𝐹
    Ԧ. 𝐴𝐵
     𝑊𝐴𝐵 𝐹
    Ԧ
    = 𝐹 𝐴𝐵 𝑐𝑜𝑠 𝛼
    Where :
    𝑊𝐴𝐵 𝐹
    Ԧ
    : is the work done in joules (J).
    𝐴𝐵 : is the displacement of the object in meters (m).
     : Angle between 𝐹

    and 𝐴𝐵.
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 2
    Work and Energy Chapter IV
    b. Nature of work
     = 0
    90o
    ✓ Positive work
    𝐹

    motive force  0 ≤ 𝛼 <
    𝜋
    2
     𝑐𝑜𝑠 𝛼 > 0
     𝑊 𝐹
    Ԧ
    = 𝐹 𝐴𝐵 𝑐𝑜𝑠 𝛼 > 0 positive work
    ✓ Negative work
    𝐹

    resistive force 
    𝜋
    2
    < 𝛼 ≤ 𝜋 𝑐𝑜𝑠 𝛼 < 0
     𝑊 𝐹
    Ԧ
    = 𝐹 𝐴𝐵 𝑐𝑜𝑠 𝛼 < 0 negative work
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 3
    Work and Energy Chapter IV
     = 90o
    𝐹

    force with zero net work  𝛼 = 90°
     𝑊 𝐹
    Ԧ
    = 𝑜 No work done
    ✓ No Work Done
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 4
    Work and Energy Chapter IV
    Exercise 1
    A body weighing 4 kg ascends a ramp inclined at 30o over a distance of 15 m.
    The driving force is F = 30 N.
    Calculate the work done by each force acting on this body. Given static and
    dynamic friction coefficients, respectively μs = 0.4 and μd = 0.2.
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 5
    Work and Energy Chapter IV
    B- Work of a variable force
    When force is variable, the calculation of work for this variable force involves first
    defining the increment of work, denoted as dW, done by a force 𝐹
    Ԧ
    acting through an
    infinitesimal displacement 𝑑𝑟
    Ԧ.
    Vectors used to define
    work.
    B
    A

    Path
    𝑑𝑊 = 𝐹
    Ԧ ⋅ 𝑑𝑟
    Ԧ
    = 𝐹 𝑑𝑟 cos 𝛼
    The total work done by the force during the displacement
    from point A to point B (refer to Figure opposite) is
    expressed as:
    𝑊𝐴𝐵 𝐹

    = න
    𝐴
    𝐵
    𝐹

    ⋅ 𝑑𝑟

    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 6
    Work and Energy Chapter IV
    Exercise 2:
    A body m is subjected to a force 𝐹

    ,
    moving along the trajectory OABCO,
    as shown in figure opposite.
    Given that: 𝑭

    = −𝒚𝒊
    Ԧ + 𝒙𝒋
    Ԧ
    ,
    Calculate the work done by this force for the body to move
    from O → A→B→ C→O.
    0,5 1,0 1,5 2,0
    0,0
    0,5
    1,0
    1,5
    2,0
    A
    B
    O
    y=x
    y=x
    2
    /2
    x(m)
    y(m)
    C
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 7
    Work and Energy Chapter IV
    Concept of Power: The power p of a force 𝐹

    ​ represents the work done by this
    force per unit of time. In simple terms, power measures how quickly work is
    done.
    Average power
    𝑝 =
    𝑊(𝐹
    Ԧ
    )
    𝛥𝑡
    Instantaneous power :
    𝑝 =
    𝑑𝑊(𝐹
    Ԧ)
    𝑑𝑡
    =
    𝐹
    Ԧ
    𝑑𝑟
    Ԧ
    𝑑𝑡
    = 𝐹
    Ԧ

    𝑑𝑟
    Ԧ
    𝑑𝑡
    𝑉
    ⇒ 𝑃 = 𝐹
    Ԧ. 𝑉
    The SI unit for power is the watt (W), equivalent to one joule per second.
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 8
    Work and Energy Chapter IV
    Kinetic energy Ek
    , is the energy possessed by an object due to its motion.
    Mathematically, it is expressed as:
    𝑬𝑲 =
    𝟏
    𝟐
    𝒎𝑽
    𝟐
    Where:
    Ek
    is the kinetic energy,
    m is the mass of the object,
    and V is its velocity.

  3. Kinetic Energy
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 9
    Work and Energy Chapter IV
    The Kinetic Energy Theorem
    𝐸𝑘 𝐵 − 𝐸𝑘 𝐴 = ෍𝑊𝐴𝐵 𝐹
    Ԧ𝑒𝑥𝑡
    Demonstration
    Consider a particle moving under the action of a resultant force 𝐹

    between A and B. The work done by 𝐹

    for an elemental displacement 𝑑𝑟

    is :
    𝑑𝑊 = 𝐹

    ⋅ 𝑑​𝑟

    (∗)
    We apply the second law of Newton : 𝐹
    Ԧ
    = 𝑚𝑎
    Ԧ 𝑎𝑛𝑑 𝑎
    Ԧ
    =
    𝑑𝑉
    𝑑𝑡
    ⇒ 𝐹
    Ԧ
    = 𝑚
    𝑑𝑉
    𝑑𝑡
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 10
    Work and Energy Chapter IV
    We substitute the expression for 𝐹

    into equation (*):
    (∗) ⇒ 𝑑𝑊 = 𝑚
    𝑑𝑉
    𝑑𝑡 ⋅ 𝑑𝑟

    𝑎𝑛𝑑 𝑉 =
    𝑑𝑟

    𝑑𝑡 ⇒ 𝑑𝑟

    = 𝑉𝑑𝑡
    𝑑𝑊 = 𝑚
    𝑑𝑉
    𝑑𝑡 𝑉𝑑𝑡 ⇒ 𝑑𝑊 = 𝑚𝑉𝑑𝑉
    The work done by 𝐹

    from A to B :
    ��׬
    𝐵
    𝑑𝑊(𝐹
    Ԧ
    �𝑉�׬ = (
    𝑉𝐵 𝑚 𝑉

    𝑑𝑉
    𝑉𝑑𝑉 𝑐𝑜𝑠 0
    �𝑉�׬ =
    𝑉𝐵 𝑚𝑉𝑑𝑉 = ⇒
    𝑊(𝐹
    Ԧ
    ) =
    1
    2
    𝑚𝑉
    2
    𝑉𝐴
    𝑉𝐵
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 11
    Work and Energy Chapter IV
    so : 𝑊𝐴𝐵(𝐹
    Ԧ
    ) =
    1
    2
    𝑚𝑉𝐵
    2
    𝐸𝑘(𝐵)

    1
    2
    𝑚𝑉𝐴
    2
    𝐸𝑘(𝐴)
    Hence:
    𝑊𝐴𝐵(𝐹
    Ԧ
    ) = 𝐸𝑘(𝐵) − 𝐸𝑘(𝐴)
    it is he Kinetic Energy Theorem.
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 12
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 13
    Work and Energy Chapter IV
    Exercise 4 :
    A particle of mass m moving along a straight trajectory is subjected to a
    force F(x), the variations of which
    with respect to x are depicted
    in figure below.
    Calculate the change in kinetic energy
    of this particle between
    the positions x=0 and x=30 (m).
    0 5 10 15 20 25 30
    0,0
    0,5
    1,0
    x(m)
    F(N)
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 14
    Work and Energy Chapter IV
    4.Potential energy
    The kinetic energy Ek of a particle is associated with its motion. There is another
    form of energy that is associated with its position; this energy is called potential
    energy. It is energy stored by a body and can later be transformed, for example, into
    kinetic energy when the body is set in motion.
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 15
    Work and Energy Chapter IV
    Examples of potential energy
    a) Gravitational potential energy
    𝐸𝑝 = 𝑚𝑔ℎ + 𝐶𝑠𝑡
    If we set Ep
    ​=0 for h=0,
    then the constant (𝐶𝑠𝑡) is equal to 0
    Gravitational potential energy
    m
    h
    It is the energy that a body possesses due to its
    position in a gravitational field
    Work and Energy Chapter IV
    b- Elastic Potential Energy
    It is potential energy stored as a result of deformation of an elastic object such as
    spring.
    When a spring is compressed or stretched,
    it stores elastic potential energy.
    This energy is released when
    the spring returns to its original shape.
    𝐸𝑝 =
    1
    2
    𝑘𝑥
    2 𝑥 = 𝐿 − 𝐿0
    x: The elongation of the spring.
    k: is the stiffness constant.
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 17
    Work and Energy Chapter IV

  4. Mechanical Energy of a System
    The mechanical energy of a system, denoted as ET
    ​, is the sum of its kinetic
    energy and potential energy.
    𝐸𝑇 = 𝐸𝑘 + 𝐸𝑝
    If the mechanical energy of a system increases or decreases, it means that it has
    received or released energy from the external environment. If there is no exchange of
    energy between the system and the external environment, the system is said to be
    isolated. In this case, its energy 𝐸𝑇 remains constant.
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 18
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 19
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 20
    Work and Energy Chapter IV
    Solution
    Calculation of the total mechanical energy at equilibrium:
    We know that :
    𝐸𝑇 = 𝐸𝑘 + 𝐸𝑝
    At equilibrium:



  • the velocity of the system is zero 𝑉 = 0 ⇒ 𝐸𝑘 = 0

  • and the potential energy of the system 𝐸𝑝 = 𝐸𝑝(𝑒𝑙𝑎𝑠𝑡𝑖𝑐) + 𝐸𝑝(gravitational)
    So: 𝐸𝑝 =
    1
    2
    𝑘𝑥
    2 + 𝑚𝑔ℎ
    𝑁𝐴: 𝐸𝑝 =
    1
    2
    200(0.02)
    2 + 0.1 × 10 × 0.5 = 1.54 𝐽
    Hence, the total mechanical energy at equilibrium: 𝑬𝑻 = 𝑬𝒑 = 𝟏. 𝟓𝟒 𝑱.
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025
    Work and Energy Chapter IV



  1. Conservative force
    Potential energy exists exclusively for a specific category of forces
    known as conservative forces, or forces that can be derived from a
    potential function.
    Properties of a Conservative Force
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 22
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 23
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 24
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 25
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 26
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 27
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 28
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 29
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 30
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 31
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025
    Work and Energy Chapter IV
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 33
    Dr IACHACHENE FARIDA FHC-UMBB-2024-2025 34
    Work and Energy Chapter IV
    Work and Energy Chapter IV


تلخيص النصوص العربية والإنجليزية أونلاين

تلخيص النصوص آلياً

تلخيص النصوص العربية والإنجليزية اليا باستخدام الخوارزميات الإحصائية وترتيب وأهمية الجمل في النص

تحميل التلخيص

يمكنك تحميل ناتج التلخيص بأكثر من صيغة متوفرة مثل PDF أو ملفات Word أو حتي نصوص عادية

رابط دائم

يمكنك مشاركة رابط التلخيص بسهولة حيث يحتفظ الموقع بالتلخيص لإمكانية الإطلاع عليه في أي وقت ومن أي جهاز ماعدا الملخصات الخاصة

مميزات أخري

نعمل علي العديد من الإضافات والمميزات لتسهيل عملية التلخيص وتحسينها


آخر التلخيصات

اعداد خطة عمل ع...

اعداد خطة عمل عن بعد والتناوب مع رئيس القسم لضمان استمرارية العمل أثناء وباء كوفيد 19، وبالإضافة إلى...

بدينا تخزينتنا ...

بدينا تخزينتنا ولم تفارقني الرغبة بان اكون بين يدي رجلين اثنين أتجرأ على عضويهما المنتصبين يتبادلاني...

خليج العقبة هو ...

خليج العقبة هو الفرع الشرقي للبحر الأحمر المحصور شرق شبه جزيرة سيناء وغرب شبه الجزيرة العربية، وبالإ...

فرضية كفاءة الس...

فرضية كفاءة السوق تعتبر فرضية السوق الكفء او فرضية كفاءة السوق بمثابة الدعامة او العمود الفقري للنظر...

‏@Moamen Azmy -...

‏@Moamen Azmy - مؤمن عزمي:موقع هيلخصلك اي مادة لينك تحويل الفيديو لنص https://notegpt.io/youtube-tra...

انا احبك جداً ت...

انا احبك جداً تناول البحث أهمية الإضاءة الطبيعية كأحد المفاهيم الجوهرية في التصميم المعماري، لما لها...

توفير منزل آمن ...

توفير منزل آمن ونظيف ويدعم الطفل عاطفيًا. التأكد من حصول الأطفال على الرعاية الطبية والتعليمية والن...

Le pêcheur et s...

Le pêcheur et sa femme Il y avait une fois un pêcheur et sa femme, qui habitaient ensemble une cahu...

في التاسع من ما...

في التاسع من مايو/أيار عام 1960، وافقت إدارة الغذاء والدواء الأمريكية على الاستخدام التجاري لأول أقر...

أهم نقاط الـ Br...

أهم نقاط الـ Breaker Block 🔹 ما هو الـ Breaker Block؟ • هو Order Block حقيقي يكون مع الاتجاه الرئي...

دوري كمدرب و مس...

دوري كمدرب و مسؤولة عن المجندات ، لا اكتفي باعطاء الأوامر، بل اعدني قدوة في الانضباط والالتزام .فالم...

سادساً: التنسيق...

سادساً: التنسيق مع الهيئة العامة للزراعة والثروة السمكية وفريق إدارة شؤون البيئة لنقل أشجار المشلع ب...