Lakhasly

Online English Summarizer tool, free and accurate!

Summarize result (50%)

(Using the AI)

This chapter defines algebraic structures, starting with internal composition laws on a set G, illustrated by addition and multiplication on number sets and composition of maps. Associative, commutative, neutral, and inverse elements are defined, leading to the definition of a group (G,⋆) requiring associativity, a neutral element, and inverses for all elements. Commutative groups are also defined. Key theorems establish the uniqueness of the neutral and inverse elements, and a formula for the inverse of a product. Subgroups H of G are defined, characterized by non-emptiness, closure under the operation and inverses. Equivalent conditions for subgroups are provided, with specific examples for additive and multiplicative groups. The chapter then introduces rings (A,+,.), defined as a commutative group under (+) and an associative operation (∙) distributive over (+). Commutative rings and rings with identity are defined. Subrings are defined and characterized. Finally, fields (𝕜,+,.) are defined as rings where all non-zero elements are invertible; commutative fields are also defined. Subfields are characterized as subrings where inverses of non-zero elements exist, with examples showing (Q,+,.) and (R,+,.) as subfields of (C,+,.).


Original text

Chapter III: Algebraic structures
Definitions
Let G be a non-empty set.



  1. The internal composition law:
    We call an internal composition law (a binary operation) a map, which is defined as: f:𝐺×𝐺→ 𝐺
    (𝑥,𝑦) → f(𝑥,𝑦)
    Wenotethislawby ⋆,T, +, ×, ∙,o,...
    Remark 1
    In general, we note this law by (⋆) and we write x ⋆ y instead of f (𝑥, 𝑦). So, we have
    ∀ x , y ∈ G : x ⋆ y ∈ G.
    Examples



  • The laws (+) and ( ∙ ) are internal composition laws on the sets: N, Z, Q, R and C.

  • The law (−) is an internal composition law on the sets: Z, Q, R and C but is not on the set N.

  • The law (o) is an internal composition law on the set of maps from G to G.
    Remark 2
    In the following, we suppose that (⋆) is an internal composition law on the set G.



  1. The associative law:
    (⋆) is an associative law If :
    Examples
    ∀x,y,z∈G: (x⋆y)⋆z=x⋆(y⋆z).



  • Thelaws(+)and(∙)areassociativelawsonthesets:N,Z,Q,RandC.

  • The law (−) is not an associative law on the sets: N, Z, Q, R and C.

  • The law (o) is an associative law on the set of maps from G to G.



  1. The commutative law:
    (⋆) is a commutative law if:
    Examples
    ∀ x , y ∈ G, x ⋆ y = y ⋆ x.



  • Thelaws(+)and(.)arecommutativelawsonthesets:N,Z,Q,RandC.

  • The law (−) is not a commutative law on the sets: N, Z, Q, R and C.

  • The law (o) is not a commutative law on the set of maps from G to G.



  1. The neutral element (the identity element):
    We say that the set G has a neutral element with respect to the law (⋆) if:
    ∃e∈G: ∀x∈G,x⋆e=x=e⋆x (eistheneutralelementofG).
    Examples



  • e = 0 is the neutral element for the law (+) and e = 1 is the neutral element for the law ( ∙ ) on the sets: N,Z,Q,RandC.

  • e = Id is the neutral element for the law (o) on the set of maps from G to G.
    22



  1. The inverse element (the symmetric element):
    We suppose that the set G has a neutral element e with respect to the law (⋆). We say that the element x has an
    inverse on G with respect to the law (⋆) if :
    ∀x∈G∃x′∈G: x⋆x′=e=x′⋆x (x′ istheinverseelementofx).
    Examples



  • x ′ = − x is the inverse element for the law (+) on the sets: Z, Q, R and C.

  • The inverse element on N does not exist (− x is not in N).

  • x ′ = x -1 is the inverse element for the law ( ∙ ) on the sets: Q {0}, R {0} and C {0}.

  • x ′ = x -1 is not in N and Z.

  • If f is a bijective map then f-1 is the inverse element of f for the law (o) on the set of maps from G to G.
    Group and Subgroup Definition1
    Let G be a non-empty set with an internal composition law (⋆). The pair (G, ⋆) is a group if the following conditions are satisfied:



  1. (⋆) is an associative law.

  2. Ghasaneutralelementewithrespectto(⋆)

  3. Any element x of G has a symmetric .
    If moreover the law (⋆) is commutative, then (G, ⋆) is called a commutative (or abelian) group.
    Examples

  4. (R, +), (Z, +), (Q, +) and (C, +) are commutative groups with the usual addition as operation. (N, +) is not a group.

  5. (Q {0}, ∙), (R {0}, ∙) and (C {0}, ∙) are commutative groups with the usual multiplication as operation. (N {0}, ∙) and (Z {0}, ∙) are not groups.

  6. The set of bijective maps with respect to the law (o) is a non-commutative group.
    Theorem1
    Let (G, ⋆) be a group then:
     The neutral element e is unique.
     An element x ∈ G has only one inverse x′ and (x′ )′= x.  ∀x,y∈G, (x⋆y)′=y′⋆x′
    Definition2
    Let (G, ⋆) be a group. A part H ⊂ G is a subgroup of G if (H, ⋆) is also a group with the law induced by that of G.. We can write H≤ G to indicate that H is a subgroup of G.
    Theorem2
    Let (G, ⋆) be a group. H ⊂ G is a subgroup of G if and only if: • H≠∅.
    •∀x,y∈H, x⋆y∈H, •∀x∈H, x′ ∈H.
    Theorem3
    Let (G, ⋆) be a group. H ≤ G if and only if:
    • H≠∅.
    • ∀x,y∈H, x⋆y′∈H. (y′ istheinverseofy).
    23


Remark1
Let (G,+)beagroup.H≤Gifand only if: • H≠∅.
• ∀x,y∈H,x−y∈H.(−yisthesymmetricofy). Remark2
Let (G, .) be a group. H ≤ G if and only if: • H≠∅.
• ∀x,y∈H,x.y-1∈H.(y-1 istheinverseofy ). Remark3
If (G, ⋆) is a group with neutral element e, then the subsets {e} and G are always groups, they are called the trivial subgroups.
Example1
Let (Z,+) be an abelian group, show that:
𝐻 = {𝑥 = 3k /k ∈ Z } is a subgroup of Z.



  1. 0=3.0=3k ⟹0∈H⟹H≠∅.

  2. ∀ x , y ∈ H : x = 3k1 , y = 3 k2 ⟹ x − y = 3(k1− k2)= 3k, k ∈ Z ⟹ x − y ∈ H. So, H≤Z.
    Example2
    Let (R {0}, .) be an abelian group, show that :
    𝐻 = {𝑥 ∈ R /x > 0 } is a subgroup of R {0}.

  3. 1>0⟹1∈H⟹H≠∅.

  4. ∀ x , y ∈ H : x > 0, y > 0 ⟹ x . y -1 > 0 ⟹ x . y -1 ∈ H. So, H ≤ R {0}.
    Ring and Subring Definition1
    Let A be a non-empty set with two internal composition laws (+) and (∙) , it is said that (A, +, . ) is a ring if the following conditions are satisfied:



  1. (A,+)isacommutativegroup.

  2. Thelaw(∙)isassociative:∀x,y,z∈A, (x.y).z=x.(y.z). 3. (∙)isdisributivetothelaw(+):
     ∀x,y,z∈A, x.(y+z)=(x.y)+(x.z).  ∀x,y,z∈A, (y+z).x=(y.x)+(z.x).
    Remarque :



  • If moreover the operation (∙) is commutative i.e: ∀ x , y ∈ G, x . y = y . x , (A, +, . ) is said to be a commutative ring.

  • If A has a neutral element compared to the (∙) law, (A, +, . ) is said to be a ring with identity or a ring with one..
    24


Example
(Z, +, . ), (Q, +, . ), (R, +, . ), (C, +, . ), are commutative rings with identity. Definition2
Let(A,+,.)bearing. B⊂AisasubgringofAif: • B≠∅.,
•∀x,y∈B, x−y∈B,
•∀x,y∈B, x.y∈B.
Note that a subring (B, +, . ) is also a ring with the law induced by that of A.
Example
(n Z, +, . ) is a subring of the ring (Z, +, . ) where n ≠ 0.
Field and Subfield Definition1
Let (𝕜, +, . ) be a ring with identity . x ∈ 𝕜 is invertible in 𝕜 if : ∃ y∈ 𝕜{0} : x . y = 1 = y . x, where 0 and 1 are the neutral elements of 𝕜 with respect to (+) and (.) respectively.
The set of all invertible elements is noted by:
𝕜*={ x∈𝕜/xisinvertiblein𝕜 }.
Example
x ∈ Z is invertible in Z if : ∃ y∈ Z {0} : x . y = 1 ⟹ 𝒚 = (𝟏) ∈ Z⟹x=∓1⟹ Z = {-1,1 }. 𝒙
Q
= Q {0}, R*= R {0}, C*= C {0}. Definition2
Let (𝕜, +, . ) be a ring with identity, we say that (𝕜, +, . ) is a field if all elements of 𝕜{0} are invertible i. e : 𝕜*=𝕜{0}.
Remark
In addition, if the law (. ) is commutative, we said that ( 𝕜 , +, .) is a commutative field.
Examples



  1. (R,+,.),(Q,+,.)𝑒𝑡(C,+,.)arecommutativefields. 2. (Z, +, . ) is not a field because Z *= {-1,1} ≠ Z{0}.
    Definition3
    Let (𝕜, +, . ) be a field and L is a subset of 𝕜, then (L, +, . ) is a subfield of (𝕜, +, . ) if: • L≠∅.,
    •∀x,y∈L, x−y∈L,
    • ∀ x , y ∈ L (y≠0), x . y -1 ∈ L. (y -1 is the symmetric element of y). Note that a subfield (L, +, . ) is also a field with the law induced by that of 𝕜.
    25


Remark
If (𝕜, +, . ) is a field and L is a subset of 𝕜, then (L, +, . ) is a subfield of (𝕜, +, . ) if: 1) (L,+,.)isasubringof(𝕜,+,.).
2) ∀x∈L{0},x--1 ∈L.
Examples



  1. (R,+,.),(Q,+,.)aresubfieldsof(C,+,.). 2. (Q,+,.)isasubfieldof(R,+,.).
    26


Summarize English and Arabic text online

Summarize text automatically

Summarize English and Arabic text using the statistical algorithm and sorting sentences based on its importance

Download Summary

You can download the summary result with one of any available formats such as PDF,DOCX and TXT

Permanent URL

ٌYou can share the summary link easily, we keep the summary on the website for future reference,except for private summaries.

Other Features

We are working on adding new features to make summarization more easy and accurate


Latest summaries

لقد حقق قسم بحو...

لقد حقق قسم بحوث المقننات المائية والري الحقلي إنجازات متعددة تعزز كفاءة استخدام المياه وتدعم التنمي...

1. قوة عمليات ا...

1. قوة عمليات الاندماج والاستحواذ المالية في المشهد الديناميكي للأعمال الحديثة، ظهرت عمليات الاندماج...

اﻷول: اﻟﺒﺤﺚ ﻋﻠﻰ...

اﻷول: اﻟﺒﺤﺚ ﻋﻠﻰ ﺗﺸﺘﻤﻞ ﺗﻤﮭﯿﺪﯾﺔ ﻣﻘﺪﻣﮫ ﺳﻨﻀﻊ اﻟﻤﺒﺤﺚ ھﺬا ﻓﻲ ﺳﺘﻜﻮن ﺧﻼﻟﮭﺎ ﻣﻦ واﻟﺘﻲ اﻟﻌﻼﻗﺔ ذﻟﺒﻌﺾ ھﺎﻌﻠﻮم ﻔﺎت ...

الوصول إلى المح...

الوصول إلى المحتوى والموارد التعليمية: تشكل منصات وسائل التواصل الاجتماعي بوابة للدخول إلى المحتوى ...

ـ أعداد التقاري...

ـ أعداد التقارير الخاصه بالمبيعات و المصاريف والتخفيضات و تسجيل الايرادات و المشتريات لنقاط البيع...

وهي من أهم مستح...

وهي من أهم مستحدثات تقنيات التعليم التي واكبت التعليم الإلكتروني ، والتعليم عن والوسائط المتعدد Mult...

كشفت مصادر أمني...

كشفت مصادر أمنية مطلعة، اليوم الخميس، عن قيام ميليشيا الحوثي الإرهابية بتشديد الإجراءات الأمنية والر...

أولاً، حول إشعي...

أولاً، حول إشعياء ٧:١٤: تقول الآية: > "ها إن العذراء تحبل وتلد ابنًا، وتدعو اسمه عمانوئيل" (إشعياء...

يفهم الجبائي ال...

يفهم الجبائي النظم بأنّه: الطريقة العامة للكتابة في جنس من الأجناس الأدبية كالشعر والخطابة مثلاً، فط...

أعلن جماعة الحو...

أعلن جماعة الحوثي في اليمن، اليوم الخميس، عن استهداف مطار بن غوريون في تل أبيب بصاروخ باليستي من نوع...

اهتم عدد كبير م...

اهتم عدد كبير من المفكرين والباحثين في الشرق والغرب بالدعوة إلى إثراء علم الاجتماع وميادينه، واستخدا...

وبهذا يمكن القو...

وبهذا يمكن القول في هذه المقدمة إن مصطلح "الخطاب" يعدُّ مصطلحًا ذا جذور عميقة في الدراسات الأدبية، ح...