لخّصلي

خدمة تلخيص النصوص العربية أونلاين،قم بتلخيص نصوصك بضغطة واحدة من خلال هذه الخدمة

نتيجة التلخيص (50%)

(تلخيص بواسطة الذكاء الاصطناعي)

This chapter defines algebraic structures, starting with internal composition laws on a set G, illustrated by addition and multiplication on number sets and composition of maps. Associative, commutative, neutral, and inverse elements are defined, leading to the definition of a group (G,⋆) requiring associativity, a neutral element, and inverses for all elements. Commutative groups are also defined. Key theorems establish the uniqueness of the neutral and inverse elements, and a formula for the inverse of a product. Subgroups H of G are defined, characterized by non-emptiness, closure under the operation and inverses. Equivalent conditions for subgroups are provided, with specific examples for additive and multiplicative groups. The chapter then introduces rings (A,+,.), defined as a commutative group under (+) and an associative operation (∙) distributive over (+). Commutative rings and rings with identity are defined. Subrings are defined and characterized. Finally, fields (𝕜,+,.) are defined as rings where all non-zero elements are invertible; commutative fields are also defined. Subfields are characterized as subrings where inverses of non-zero elements exist, with examples showing (Q,+,.) and (R,+,.) as subfields of (C,+,.).


النص الأصلي

Chapter III: Algebraic structures
Definitions
Let G be a non-empty set.



  1. The internal composition law:
    We call an internal composition law (a binary operation) a map, which is defined as: f:𝐺×𝐺→ 𝐺
    (𝑥,𝑦) → f(𝑥,𝑦)
    Wenotethislawby ⋆,T, +, ×, ∙,o,...
    Remark 1
    In general, we note this law by (⋆) and we write x ⋆ y instead of f (𝑥, 𝑦). So, we have
    ∀ x , y ∈ G : x ⋆ y ∈ G.
    Examples



  • The laws (+) and ( ∙ ) are internal composition laws on the sets: N, Z, Q, R and C.

  • The law (−) is an internal composition law on the sets: Z, Q, R and C but is not on the set N.

  • The law (o) is an internal composition law on the set of maps from G to G.
    Remark 2
    In the following, we suppose that (⋆) is an internal composition law on the set G.



  1. The associative law:
    (⋆) is an associative law If :
    Examples
    ∀x,y,z∈G: (x⋆y)⋆z=x⋆(y⋆z).



  • Thelaws(+)and(∙)areassociativelawsonthesets:N,Z,Q,RandC.

  • The law (−) is not an associative law on the sets: N, Z, Q, R and C.

  • The law (o) is an associative law on the set of maps from G to G.



  1. The commutative law:
    (⋆) is a commutative law if:
    Examples
    ∀ x , y ∈ G, x ⋆ y = y ⋆ x.



  • Thelaws(+)and(.)arecommutativelawsonthesets:N,Z,Q,RandC.

  • The law (−) is not a commutative law on the sets: N, Z, Q, R and C.

  • The law (o) is not a commutative law on the set of maps from G to G.



  1. The neutral element (the identity element):
    We say that the set G has a neutral element with respect to the law (⋆) if:
    ∃e∈G: ∀x∈G,x⋆e=x=e⋆x (eistheneutralelementofG).
    Examples



  • e = 0 is the neutral element for the law (+) and e = 1 is the neutral element for the law ( ∙ ) on the sets: N,Z,Q,RandC.

  • e = Id is the neutral element for the law (o) on the set of maps from G to G.
    22



  1. The inverse element (the symmetric element):
    We suppose that the set G has a neutral element e with respect to the law (⋆). We say that the element x has an
    inverse on G with respect to the law (⋆) if :
    ∀x∈G∃x′∈G: x⋆x′=e=x′⋆x (x′ istheinverseelementofx).
    Examples



  • x ′ = − x is the inverse element for the law (+) on the sets: Z, Q, R and C.

  • The inverse element on N does not exist (− x is not in N).

  • x ′ = x -1 is the inverse element for the law ( ∙ ) on the sets: Q {0}, R {0} and C {0}.

  • x ′ = x -1 is not in N and Z.

  • If f is a bijective map then f-1 is the inverse element of f for the law (o) on the set of maps from G to G.
    Group and Subgroup Definition1
    Let G be a non-empty set with an internal composition law (⋆). The pair (G, ⋆) is a group if the following conditions are satisfied:



  1. (⋆) is an associative law.

  2. Ghasaneutralelementewithrespectto(⋆)

  3. Any element x of G has a symmetric .
    If moreover the law (⋆) is commutative, then (G, ⋆) is called a commutative (or abelian) group.
    Examples

  4. (R, +), (Z, +), (Q, +) and (C, +) are commutative groups with the usual addition as operation. (N, +) is not a group.

  5. (Q {0}, ∙), (R {0}, ∙) and (C {0}, ∙) are commutative groups with the usual multiplication as operation. (N {0}, ∙) and (Z {0}, ∙) are not groups.

  6. The set of bijective maps with respect to the law (o) is a non-commutative group.
    Theorem1
    Let (G, ⋆) be a group then:
     The neutral element e is unique.
     An element x ∈ G has only one inverse x′ and (x′ )′= x.  ∀x,y∈G, (x⋆y)′=y′⋆x′
    Definition2
    Let (G, ⋆) be a group. A part H ⊂ G is a subgroup of G if (H, ⋆) is also a group with the law induced by that of G.. We can write H≤ G to indicate that H is a subgroup of G.
    Theorem2
    Let (G, ⋆) be a group. H ⊂ G is a subgroup of G if and only if: • H≠∅.
    •∀x,y∈H, x⋆y∈H, •∀x∈H, x′ ∈H.
    Theorem3
    Let (G, ⋆) be a group. H ≤ G if and only if:
    • H≠∅.
    • ∀x,y∈H, x⋆y′∈H. (y′ istheinverseofy).
    23


Remark1
Let (G,+)beagroup.H≤Gifand only if: • H≠∅.
• ∀x,y∈H,x−y∈H.(−yisthesymmetricofy). Remark2
Let (G, .) be a group. H ≤ G if and only if: • H≠∅.
• ∀x,y∈H,x.y-1∈H.(y-1 istheinverseofy ). Remark3
If (G, ⋆) is a group with neutral element e, then the subsets {e} and G are always groups, they are called the trivial subgroups.
Example1
Let (Z,+) be an abelian group, show that:
𝐻 = {𝑥 = 3k /k ∈ Z } is a subgroup of Z.



  1. 0=3.0=3k ⟹0∈H⟹H≠∅.

  2. ∀ x , y ∈ H : x = 3k1 , y = 3 k2 ⟹ x − y = 3(k1− k2)= 3k, k ∈ Z ⟹ x − y ∈ H. So, H≤Z.
    Example2
    Let (R {0}, .) be an abelian group, show that :
    𝐻 = {𝑥 ∈ R /x > 0 } is a subgroup of R {0}.

  3. 1>0⟹1∈H⟹H≠∅.

  4. ∀ x , y ∈ H : x > 0, y > 0 ⟹ x . y -1 > 0 ⟹ x . y -1 ∈ H. So, H ≤ R {0}.
    Ring and Subring Definition1
    Let A be a non-empty set with two internal composition laws (+) and (∙) , it is said that (A, +, . ) is a ring if the following conditions are satisfied:



  1. (A,+)isacommutativegroup.

  2. Thelaw(∙)isassociative:∀x,y,z∈A, (x.y).z=x.(y.z). 3. (∙)isdisributivetothelaw(+):
     ∀x,y,z∈A, x.(y+z)=(x.y)+(x.z).  ∀x,y,z∈A, (y+z).x=(y.x)+(z.x).
    Remarque :



  • If moreover the operation (∙) is commutative i.e: ∀ x , y ∈ G, x . y = y . x , (A, +, . ) is said to be a commutative ring.

  • If A has a neutral element compared to the (∙) law, (A, +, . ) is said to be a ring with identity or a ring with one..
    24


Example
(Z, +, . ), (Q, +, . ), (R, +, . ), (C, +, . ), are commutative rings with identity. Definition2
Let(A,+,.)bearing. B⊂AisasubgringofAif: • B≠∅.,
•∀x,y∈B, x−y∈B,
•∀x,y∈B, x.y∈B.
Note that a subring (B, +, . ) is also a ring with the law induced by that of A.
Example
(n Z, +, . ) is a subring of the ring (Z, +, . ) where n ≠ 0.
Field and Subfield Definition1
Let (𝕜, +, . ) be a ring with identity . x ∈ 𝕜 is invertible in 𝕜 if : ∃ y∈ 𝕜{0} : x . y = 1 = y . x, where 0 and 1 are the neutral elements of 𝕜 with respect to (+) and (.) respectively.
The set of all invertible elements is noted by:
𝕜*={ x∈𝕜/xisinvertiblein𝕜 }.
Example
x ∈ Z is invertible in Z if : ∃ y∈ Z {0} : x . y = 1 ⟹ 𝒚 = (𝟏) ∈ Z⟹x=∓1⟹ Z = {-1,1 }. 𝒙
Q
= Q {0}, R*= R {0}, C*= C {0}. Definition2
Let (𝕜, +, . ) be a ring with identity, we say that (𝕜, +, . ) is a field if all elements of 𝕜{0} are invertible i. e : 𝕜*=𝕜{0}.
Remark
In addition, if the law (. ) is commutative, we said that ( 𝕜 , +, .) is a commutative field.
Examples



  1. (R,+,.),(Q,+,.)𝑒𝑡(C,+,.)arecommutativefields. 2. (Z, +, . ) is not a field because Z *= {-1,1} ≠ Z{0}.
    Definition3
    Let (𝕜, +, . ) be a field and L is a subset of 𝕜, then (L, +, . ) is a subfield of (𝕜, +, . ) if: • L≠∅.,
    •∀x,y∈L, x−y∈L,
    • ∀ x , y ∈ L (y≠0), x . y -1 ∈ L. (y -1 is the symmetric element of y). Note that a subfield (L, +, . ) is also a field with the law induced by that of 𝕜.
    25


Remark
If (𝕜, +, . ) is a field and L is a subset of 𝕜, then (L, +, . ) is a subfield of (𝕜, +, . ) if: 1) (L,+,.)isasubringof(𝕜,+,.).
2) ∀x∈L{0},x--1 ∈L.
Examples



  1. (R,+,.),(Q,+,.)aresubfieldsof(C,+,.). 2. (Q,+,.)isasubfieldof(R,+,.).
    26


تلخيص النصوص العربية والإنجليزية أونلاين

تلخيص النصوص آلياً

تلخيص النصوص العربية والإنجليزية اليا باستخدام الخوارزميات الإحصائية وترتيب وأهمية الجمل في النص

تحميل التلخيص

يمكنك تحميل ناتج التلخيص بأكثر من صيغة متوفرة مثل PDF أو ملفات Word أو حتي نصوص عادية

رابط دائم

يمكنك مشاركة رابط التلخيص بسهولة حيث يحتفظ الموقع بالتلخيص لإمكانية الإطلاع عليه في أي وقت ومن أي جهاز ماعدا الملخصات الخاصة

مميزات أخري

نعمل علي العديد من الإضافات والمميزات لتسهيل عملية التلخيص وتحسينها


آخر التلخيصات

يتفق الباحثون ب...

يتفق الباحثون بشكل عام على أن تنمية مهارات إدارة المعرفة تتطلب التفاعل المشترك بين الأفراد واستخدام ...

بما أن الفلسفة ...

بما أن الفلسفة والعلم حقلان معرفيان مختلفان، ولكل منهما خصائص تختلف عن الآخر، فقد برزت الدعوة الى ا...

1-بذلت أنا والأ...

1-بذلت أنا والأم جهود لا تقدر بثمن لتلبية احتياجات أبنائنا الاثنين عبدالله واليازية وبالإضافة إلى ت...

With such sadne...

With such sadness occupying her thoughts,Erika, a poor single mother of two, struggles to sleep at n...

1. طوير برامج م...

1. طوير برامج متكاملة: ينبغي تصميم وتصميم برامج تأهيل متكاملة تشمل التعليم والتدريب المهني والفنون، ...

تُعتبر المملكة ...

تُعتبر المملكة العربية السعودية واحدة من أهم الدول في العالم العربي والإسلامي، حيث تحتل موقعًا جغراف...

This study expl...

This study explores university students' experiences and perceptions of using artificial intelligenc...

1 تجارب تهدف ال...

1 تجارب تهدف الى اكتشاف الظواهر الجديدة 2 تجارب التحقق تهدف لاثبات او دحض الفرضيات وتقدير دقتها 3 ال...

علق رئيس الوزرا...

علق رئيس الوزراء المصري مصطفى مدبولي، على صورته المتداولة والتي أثارت الجدل برفقة نظيره الإثيوبي آبي...

تعاني المدرسة م...

تعاني المدرسة من مجموعة واسعة من المخاطر التي تهدد سلامة الطلاب والطاقم التعليمي وتعوق العملية التعل...

يهدف إلى دراسة ...

يهدف إلى دراسة الأديان كظاهرة اجتماعية وثقافية وتاريخية، دون الانحياز إلى أي دين أو تبني وجهة نظر مع...

‏تعريف الرعاية ...

‏تعريف الرعاية التلطيفية‏ ‏وفقا للمجلس الوطني للصحة والرفاهية ، يتم تعريف الرعاية التلطيفية على النح...